
Afinder: Expressing Concepts of Situations that Aford
Activities using Context-Detectors

Ryan Louie Darren Gergle Haoqi Zhang
Northwestern University Northwestern University Northwestern University

Evanston, IL, USA Evanston, IL, USA Evanston, IL, USA
ryanlouie@u.northwestern.edu dgergle@northwestern.edu hq@northwestern.edu

ABSTRACT
Context-aware applications have the potential to act opportunisti-
cally to facilitate human experiences and activities, from reminding
us of places to perform personal activities, to identifying coinciden-
tal moments to engage in digitally-mediated shared experiences.
However, despite the availability of context-detectors and program-
ming frameworks for defning how such applications should trigger,
designers lack support for expressing their human concepts of a
situation and the experiences and activities they aford (e.g., situa-
tions to toss a frisbee) when context-features are made available at
the level of locations (e.g., parks). This paper introduces Afnder, a
block-based programming environment that supports constructing
concept expressions that efectively translate their conceptions of
a situation into a machine representation using available context
features. During pilot testing, we discovered three bridging chal-
lenges that arise when expressing situations that cannot be encoded
directly by a single context-feature. To overcome these bridging
challenges, Afnder provides designers (1) an unlimited vocabulary
search for discovering features they may have forgotten; (2) prompts
for refecting and expanding their concepts of a situation and ideas
for foraging for context-features; and (3) simulation and repair tools
for identifying and resolving issues with the precision of concept
expressions on real use-cases. In a comparison study, we found that
Afnder’s core functions helped designers stretch their concepts of
how to express a situation, fnd relevant context-features matching
their concepts, and recognize when the concept expression oper-
ated diferently than intended on real-world cases. These results
show that Afnder and tools that support bridging can improve a
designer’s ability to express their concepts of a human situation into
detectable machine representations—thus pushing the boundaries
of how computing systems support our activities in the world.

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI); Interactive systems and tools; User studies.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9157-3/22/04. . . $15.00
https://doi.org/10.1145/3491102.3501902

KEYWORDS
context-aware programming; expressing concepts of situations;
context-features; design fxation; bridging challenges; block-based
programming

ACM Reference Format:
Ryan Louie, Darren Gergle, and Haoqi Zhang. 2022. Afnder: Expressing
Concepts of Situations that Aford Activities using Context-Detectors. In
CHI Conference on Human Factors in Computing Systems (CHI ’22), April
29-May 5, 2022, New Orleans, LA, USA. ACM, New York, NY, USA, 18 pages.
https://doi.org/10.1145/3491102.3501902

1 INTRODUCTION
Context-aware technologies have an enormous potential to be help-
ful and responsive within many situations that arise during people’s
daily lives. Increasingly, mobile context-awareness applications are
being developed to help end-users think about places they are vis-
iting, and what they can do there. For example, such applications
can remind users to engage in personal activities or routines (e.g.,
buy vegetables, listen to live music) based on relevant places they
encounter in their daily lives [8] or help users fnd coincidental
moments to engage in shared experiences with other people across
distributed contexts (e.g., when family members living apart can
share a meal together) [32] The proliferation of context-aware ap-
plications have been possible due to the advances in better mobile
sensors, location-based information sources (e.g., Foursquare, Yelp),
and machine learning algorithms—which have made available a di-
verse set of component detectors that infer semantically-meaningful
aspects of a user’s context, which we refer to as context-features (e.g.,
whether a user is moving or stationary, whether they are visiting a
park, whether their current weather is windy or not). By providing
such semantically-meaningful context-features to program with,
frameworks for building context-aware applications have made it
easier for application designers to defne how an application should
trigger and act based on a user’s current context.

Despite this focus on better component detectors and context-
features, it is difcult to encode human concepts of a situation into
a machine representation using available context-features. While
context-features provided by mobile context frameworks are useful
for detecting events or actions at the level of locations and place
categories (e.g., a restaurant tagged with the place category ‘soup’;
a ‘park’), its difcult to use such context-features to describe situa-
tions that would support experiences (e.g., ‘enjoying a warm meal
on a cold day’; ‘good for tossing a frisbee’) when these concepts
are several levels of abstraction removed from the context-features.
While context-programming frameworks and trigger-action pro-
gramming tools [13, 40] have made it easier for authors to access a

https://doi.org/10.1145/3491102.3501902
https://doi.org/10.1145/3491102.3501902
mailto:permissions@acm.org

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Ryan Louie, Darren Gergle, and Haoqi Zhang

variety of context-features, their processes for programming the sit-
uational detectors are limited to creating simple situation detectors
at the level of the events and locations which can be detected. In-
stead, we argue that what is needed are programming environments
that explicitly support the cognitive work required to fesh out an
author’s concept for how a situation might enable experiences (e.g.,
‘soup’ is one category of restaurants for a cold day, but where else?)
and translate how available context-features apply to their concept.
If designers could encode their human concepts of a situation—such
as what contexts are appropriate for engaging in a personal activity,
or what contexts support engaging in a digitally-mediated shared
experience—it would improve the ability of applications to recog-
nize human situations and facilitate appropriate activities within
them.

To support designer’s in expressing the human concepts of how
situations aford activities and experiences to machines, we de-
signed and built a programming environment named Afnder. Us-
ing Afnder, a designer can take their ideas for a situation they
want to use in a location-based, context-aware application, and
translate their human concepts of that situation into a logical ex-
pression using readily detectable context-features, which we call a
concept expression. Concept expressions can then be used by applica-
tions to identify the situation across end-users’ mobile contexts. For
example, a designer of a mobile app that reminds users of opportu-
nities to engage in personal activities or routines can construct the
high-level concept “awesome for tossing a frisbee around” by using
simpler concepts and detectors such as open recreational areas (disc
golf, parks, playgrounds, beaches), weather is not disruptive (not
windy), and while there is daylight (time between sunrise and sun-
set). Afnder was designed to structure a construction process that
allows people to fexibly switch between breaking down a higher-
level concept into a construction that gets closer to the detectable
features (top-down), and in defning more general concepts that
link detectable context-features to human concepts (bottom-up).
To support this, Afnder uses a block-based programming envi-
ronment that provides a single, visual workspace for authors to (1)
declare concept variables, or intermediate concepts that serve as
links between an abstract concept and the context features; (2) for-
age for context-features that match their concepts; and (3) compose
representations using logical operators; see Figure 1.

From our design-based research process creating Afnder, we
also uncovered a set of bridging challenges, or specifc obstacles
that arise when trying to express concepts of a situation that can-
not be directly specifed with any single, detectable context-feature.
First, concept expressions may be too narrowly defned, or under-
scoped, when a designer retrieves one context feature for a concept
(e.g., ‘parks’ for ‘grassy felds’) but misses other context features
(e.g., ‘football’ felds) that also match the concept. Second, the un-
derscoping problem can also occur if a designer fxates on their
early concepts of a situation (e.g., ‘grassy felds’ are good for frisbee
tossing), which may result in a too narrow of an efort to forage for
context-features that are relevant to the situation (e.g., in narrowly
searching for context-features matching ‘grassy felds’, a designer
can miss ‘beaches’ that are also good for frisbee tossing). Third,
concept expressions may also include detector inaccuracies when a
designer uses a context feature that does not evaluate the concept
expression as expected (e.g., ‘parks’ may match all parks, including

dog parks and skate parks that may be less desired as places for
tossing a frisbee). To address these bridging challenges, Afnder
contributes three core features that support designer cognition
when expanding their concepts and translating them to machine
features: (1) an unlimited vocabulary search for discovering context
features they may have forgotten; (2) refect and expand prompts
that help designers generalize their notions of the concept they
are trying to express and expand their eforts to forage for the
context-features; and (3) simulation and repair tools for identifying
and resolving issues with how machine detectors may operate on
real use-cases diferently than an author intends.

We conducted a between-subjects test comparing authors’ use
of Afnder with all of its core features to address the bridging
challenges vs. a baseline version of the block-based construction
environment that only supported an opportunistic construction
process. Across both versions, we found that all participants could
use Afnder to encode a conceptual-rich situation (e.g., awesome
for tossing a frisbee; enjoying food for a cold day) into a detectable
machine representation using available context-features. Partici-
pants using the experimental condition of Afnder were able to
bridge to several relevant context-features matching their original
conception using the unlimited vocabulary search. Additionally,
participants expanded their concepts for how a situation could be
realized; this conceptual stretch occurred both (a) after discover-
ing context-features during searching that shifted their original
notions, and (b) after stopping when stuck and fxated, and then
refecting about how a context-feature is generally appropriate and
matches the high-level situation. Finally, the simulation and repair
tools helped them recognize and address several cases where their
concept expressions and underlying machine detectors operated
diferently on real-world cases than they expected.

In summary, this paper makes the following contributions:

• We present Afnder, a programming environment that sup-
ports an efective process for encoding human concepts of
situations into a machine representation using available con-
text features.

• We identify three bridging challenges arising from the mis-
match between human concepts of a situation and the ma-
chine’s available representations, including (1) underscoping
on machine features; (2) underscoping on author concepts;
and (3) concept expression inaccuracies.

• To address the bridging challenges, we contribute the design
of three core features in Afnder: (1) unlimited vocabulary
search for discovering relevant machine representations; (2)
prompts for refecting and expanding conceptual representa-
tions; and (3) tools for simulating and repairing inaccuracies
in how concept expressions operate in real-world cases.

• In a lab study with Afnder, our results show how partici-
pants can follow an efective process for constructing con-
cept expressions, and how Afnder’s core features can ad-
dress the bridging challenges by helping authors refect on,
stretch, and update their own conceptions while accurately
translating their conceptual representations to the machine’s
available representations.

Afinder: Expressing Concepts of Situations using Context-Detectors CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Figure 1: Afnder is a block-based programming environment for constructing concept expressions that efectively express
a designer’s concepts of a situation and the activities it afords (e.g., situations to share a cheers) to machines using available
context-features. The visual workspace (top-right) supports declaring intermediate concepts that serve as links between an
abstract concept and available context features; foraging for context features through browsing and searching hierarchies of
features; and composing representations. Afnder implements three core features to support construction: (1) an unlimited
vocabulary search tool (top-left) helps designers discover available context-features relevant to their concepts; (2) reflect and
expand prompts help designers generalize their notions of the concept they are trying to express and expand their foraging
eforts; and (3) simulation and repair tools (bottom) help with identifying and resolving issues with the precision of concept
expressions on real use-cases.

In the rest of the paper, we motivate Afnder through related
work, describe the bridging challenges that arise during construc-
tion, and we detail the design and implementation of Afnder. We
then report on the results of the lab study of Afnder, and end with a
discussion on takeaways and future directions for tools that support
bridging between human concepts and machine representations.

2 BACKGROUND
Context-aware systems are made up of two main components:
(1) context providers, which use algorithms and inference tech-
niques to extract attributes of a persons’ context from sensors,
which we refer to as machine detectable context-features; and (2)
context-awareness services, which continuously reason about these
attributes of context to perform useful actions on behalf of the
user [36]. To develop use-cases for context-aware applications, au-
thors must encode their concepts of a situation into a machine
representation using context features made available by context
providers. Since the created machine representations are composed
of detectable context-features, context-aware services can then use

these machine representations to act and facilitate interactions
within desired situations.

Over the last two decades, research in context-aware computing
and machine learning has signifcantly expanded the ability of
context providers to infer aspects of human context across the
dimensions of location, identity, activity, and time [1]. This work
has led to numerous component detectors for various facets of
context through better data, algorithms, and sensors (e.g., [22]).
More recently, research systems have focused on using machine
learning to model complex human situations within the domains
of human activity recognition [18, 27], interruptibility and optimal
work breaks [26], and mood-related mental health [34].

Today, many context features are widely available through mo-
bile context providers (e.g., the Google Awareness API [29]) that
implement a wide range of component detectors including time,
location, places, activity, and weather. Moreover, context-aware and
trigger-action programming tools (e.g., iCAP [13], and IFTTT, or
if-this-then-that [40]) have made it easier to program with context

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Ryan Louie, Darren Gergle, and Haoqi Zhang

features. But while existing context provider APIs and program-
ming tools provide application designers access to large sets of
context-features, they provide few supports for expressing and
encoding higher-level concepts of a situation that may be several
levels of abstraction removed from these features. For example,
while several trigger-action frameworks (e.g., multi-trigger vari-
ants of IFTTT) do support composing multiple context-features
together into a single event, the situations expressed are assumed to
be near the feature level, which allows rules to be built by accessing
conceptual features directly [40].

When concepts of a situation are difcult for users to encode with
the available features, programming by demonstration approaches
have been successful in helping users map between a high-level
situation and the available context features and sensors [11]. How-
ever, these approaches assume human teachers have an unchanged
understanding about a concept and thus can easily provide positive
and negative examples to a model to support. For our setting and
task of expressing an author’s concept of situations that support
a desired activity, the application designer can sufer from design
fxation [3, 7], which could result in the created machine represen-
tation being underscoped, or too narrowly defned, with respect to
all the ways a situation could support a desired activity. Ultimately,
unless we help the human expand their conception, whatever way
they express it to machines (explicitly through construction, or
implicitly through labels) will be limited to their current concep-
tion. For our proposed solution, Afnder provides specifc cognitive
scafolds for the construction process, where an author declares
their concepts and forages for context-features explicitly, which we
argue naturally helps them fesh out and expand their own ideas in
the process.

One particular challenge that arises in the construction process is
identifying context features that support engaging in an experience
or activity. Prior work by Dearman et al [9] attempted to do this
by identifying potential activities supported at various locations by
mining community-authored content (e.g., reviews). This approach
extracts verb-noun pairs from community-authored content about
a location in order to identify the potential activities supported by
that location. While this work creates an extensive set of compo-
nent detectors for potential activities supported by a location, it
is limited to exact activities (e.g., drink soup) but can struggle to
return results for higher-level situations of interest (e.g., places to
enjoy warm food on a cold day). In other words, their approach may
be particularly useful for fnding context features matching specifc
(low-level) activities, but less useful for identifying features related
to higher-level situations of interest. To address this problem, we
introduce a more fexible unlimited vocabulary approach for fnd-
ing features, and additionally introduce tools for representing and
acting on relevant concepts across levels.

3 THE BRIDGING PROBLEM
In this section, we introduce the idea of the bridging problem: the
difculty in encoding human concepts of how a situation supports
desired experiences into a machine representation using available
context-features. For example, an author may want to design a
situational trigger that identifes everyday opportunities for users to
perform a playful activity like throwing a frisbee. Starting with their

human concepts, an author wants to include other place contexts
like ‘parks’ good for tossing a frisbee, and also recognizes that most
‘open felds ’ would be generally appropriate for this activity. Now,
the author needs to fgure out how to link between their concepts
of how a situation enables tossing a frisbee and the detectable
context-features.

A key technical challenge is fguring out an efective construction
process for bridging from human (mental) representations of a
conceptually-rich human situation to a machine representation
built using available context features. In one direction, a top-down
process can support a creator decomposing a situation into simpler
concepts, but can frequently lead to scenarios where a creator fnds
that there are no matching context features for such concepts (e.g.,
no detector for ‘open space’). In earlier systems such as iCAP [13],
such concepts are simply ignored and left out of the construction.
In another direction, bottom-up approaches allow for reusing and
composing context features [37, 40], but developers can become
stuck when they do not know a priori what context features may be
useful for expressing an abstract idea that they have. To overcome
these challenges, we recognized that authors need a more fuid
construction process that allows them to choose a top-down or
bottom-up strategy in order to fnd a link between their concepts
of the situation and the available context-features.

In addition to enabling a more fuid construction process, we
focused our design eforts on uncovering and addressing some of the
specifc challenges that arise in this construction process. We used
a design-based research method in which we iteratively prototyped
and tested with participants across two rounds of pilot tests (N = 7,
N = 6) to understand how Afnder supports an author’s process in
constructing high-level situations from available context-features,
and any remaining obstacles that arose. We tasked participants
with expressing high-level situations that identify opportunities
to have shared experiences in a context-aware social application
use-case (e.g., situations to share a cheers; awesome situations to
throw a paper airplane; situations to watch the sunset over water).

Through this phase of iterative prototyping and pilot testing,
we identifed three general bridging challenges authors face when
there is a mismatch between their human (conceptual) represen-
tations and the machine’s available representations. Across these
challenges, we found that they can be caused by cognition difcul-
ties in feshing out concepts for how a situation supports potential
activities, and in translating these concepts into available machine
detectable features.

3.1 Underscoped on Features
Concept expression may be too narrowly defned, or underscoped,
when a designer recalls one context feature for a concept (‘parks’ for
open space) but forgets other context features (e.g., ‘beaches’) that
also match the concept. The underscoping problem can occur when
trying to translate from their concepts to the available features:
when foraging for relevant context-features from a long list of
features, designers may fail to fnd a comprehensive set of context-
features matching their concept for a situation; see top-row of
Figure 2.

We noticed in early piloting that the list of place category de-
tectors provided by the Yelp Places API [24] was extensive and

Afinder: Expressing Concepts of Situations using Context-Detectors CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Grassy
Fields

!

fields

Parks Football Discgolf

Unlimited Vocabulary Search

Baseball
fields

Simple Text Search
!

 fields

baseballfields

Grassy
Fields

!

fields

Parks Football Discgolf
Baseball

fields

!

 fields

Baseballfields
Parks
Football
Discgolf

Situations to
Toss a Frisbee

Parks

!

Park

Playgrounds

Open areas
to play

!

fields

DiscgolfBaseball
fields

!

open
areas

Why is “parks”
appropriate for “situations
to toss a frisbee?

> Open areas to play

Situations to
Toss a Frisbee

Parks

!

Park

Playgrounds

Open areas
to play

!

fields

Discgolf
Baseball

fields

!

open
areas

Reflect and Expand Prompts

Example of Construction Challenge Affinder’s Technical Solution

Concept Expression Operates Differently Than Expected

Open areas
to play

Parks

Set

To

Open areas
to playSet

To

Underscoped on Features
Designer retrieves some
context-features, but misses
others that also match the
concept

Construction Challenge

Underscoped on Concepts
Designer has narrow notions of
the concept they are trying to
express, resulting in a limited
effort to forage for relevant
context-features.

Concept Expression
Inaccuracies
Designer may not realize that
context-features will operate
differently than they intended.

Simulate on real-world cases, identify cases that pose issues, and repair
concept expression to resolve issues

Figure 2: We identify three construction challenges, and implement their corresponding solutions in Afnder: (A) concept
expressions can be underscoped if designers fail to retrieve relevant features for a concept; (B) concept expressions can be un-
derscoped if concept variables are too narrowly defned which limits eforts to forage for features; and (C) concept expressions
can have inaccuracies, when it executes not as a designer intends.

thousands of items long, making it impractical for designers to
comprehensively scan through the hierarchy of items. Designers
could use simple text search on this list, but they may not know all
the names of the place categories that Yelp defnes a priori to know
which ones will be useful. For example, a pilot participant thought
that “felds” would be a type of place listed on Yelp, and with simple
text search, this query returned “baseballfelds”. However, there are
many other place categories (e.g., parks, football, stadiums, discgolf)
which may contain the open grassy feld for frisbee tossing they
conceptualized. Evidently, diferent designers will have their own
notions and vocabulary of a concept which makes it difcult to fnd
relevant machine features [17]. Thus, our frst round of iterative
development and piloting aimed to support designers in fnding
the broader set of place context-features based on their notions of
a high-level activity and situation.

3.2 Underscoped on Concepts
The underscoping problem can also occur when designers fxate
on a narrow set of intermediate concepts to describe their overall
concept for a situation. Studies of designer’s cognition and metacog-
nition highlight that designers have a tendency to fxate their search
for solutions, with a cognitive bias towards their earliest solution
ideas [3, 7]. Much like the literature suggests, we saw this with
participant designers in our pilots. For instance, the middle-row
of Figure 2 illustrates how one designer from our pilots narrowly
conceptualized the idea of “situations to throw a frisbee”. They
started by recalling “parks” as a common place they associate with

being able to perform the activity. However, after using this search
term to fnd a few place context-features that aforded the activity
(e.g., park, dogpark), the participant stopped their search for other
potentially relevant place category context features.

What this participant didn’t conceptualize was a more general-
ized notion of what makes a place good for tossing a frisbee (e.g.,
a place must have “open areas to play”). Had they had a broader
notion, they could have continued to forage for context-features
in other part of conceptual space (e.g., “open area”, “felds”), and
found other context-features relevant to detecting situations to toss
a frisbee (e.g., playgrounds, baseball felds, discgolf). Thus, our sec-
ond phase of pilot development focused on helping designers push
past their earliest concepts for a high-level situation, and encourage
them to expand their concepts and associated context-features for
a situation.

3.3 Concept Expression Inaccuracies
Creating a concept expression that operates accurately in real-world
scenarios requires iterative refnement. Concept expressions can
operate inaccurately when a context-feature does not operate as
a designer intends. For example, they may not precisely match a
concept (e.g., public gardens are parks but are not good for frisbee
tossing); see bottom-row of Figure 2.

In early prototyping, we observed that users’ mental-model
about a context-feature, based upon only its name, can often mis-
match how a context-feature actually applies to real-world cases.
This led to participants adding context-features which inaccurately

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Ryan Louie, Darren Gergle, and Haoqi Zhang

matched the concept expression when applied to real-world place
venues (e.g., ‘recreation’ refers to indoor recreation centers and
gyms which are not appropriate for frisbee tossings). As a low-
fdelity solution for this challenge, we allowed authors to reference
the Yelp website to view example locations that were listed for any
place category they were uncertain about. Eventually, we incorpo-
rated this as an integrated interface in Afnder, where users could
view several example location venues listed for a place category
context-feature.

Additionally, a more subtle way concept expressions can inac-
curately match was when several real-world cases challenged a
designer’s primary mental model of a context-feature. For example,
a user was originally thinking of “parks” as a category for throwing
paper airplanes, but recognized through foraging for other place
category context-features that some “parks”, such as “dog parks"
would more likely lead to “a dog chewing up the airplane.” Thus in
our second round of pilot prototyping, we focused on developing
tools integrated within Afnder’s construction environment to help
designers simulate their concept expressions on real-world cases so
as to surface when concept expressions and their context-features
operate diferently than intended.

4 AFFINDER
In this section, we introduce Afnder, a programming environment
for constructing concept expressions that efectively translates an
author’s human concept of a situation into a machine representation
using context-features that can be acted upon computationally.
Specifcally, Afnder allows a designer to take a situation they
wish to use in a location-based or context-aware application (e.g.,
where to go to share a warm meal on a cold day), and to translate
it— through the process of construction—into a logical expression
based on available context features that can be readily detected
and used with an application (e.g., restaurants serving soup OR
restaurants serving spicy food).

To support this, Afnder provides (1) a block-based program-
ming environment that facilitates an opportunistic construction
process designed to overcome challenges with strictly top-down
or bottom-up strategies. To address the three bridging challenges
that arise during the construction process, Afnder also provides
(2) an unlimited vocabulary search for discovering context features
one may have forgotten; (3) refect and expand prompts that help
generalize one’s concepts of the situation and expand one’s eforts
to forage for context-features; and (4) simulation and repair tools
for identifying and resolving issues with how context features may
operate on real use-cases diferently than an author intends. We
describe each of these functions below.

4.1 Block-Based Construction Environment
To overcome the shortcomings of top-down and bottom-up ap-
proaches, we draw on theories from opportunistic planning [20]
to support an opportunistic construction process, in which a cre-
ator can follow both top-down or bottom-up processes at any time.
Decisions and observations during construction may suggest new
ideas or illuminate problems that cause the creator to shift their
strategy. To support this construction process, Afnder employs
a block-based programming environment that provides a single,

visual workspace in which designers can (a) declare concept vari-
ables to represent intermediate concepts that serve as links between
an abstract concept and available context features; (b) forage for
context features by browsing and searching through categories of
features; and (c) compose representations using logical operators;
see Figure 3. We argue that this block-based approach can efec-
tively support an opportunistic construction process by visually
linking concept variables to context features; supporting recogni-
tion over recall; and reducing cognitive load by helping developers
focus on concepts and how they are connected instead of on syntax
and code.

Declaring concepts entails breaking down an idea about a situa-
tion into smaller concepts. These smaller concepts serve as a link
between a conceptually-abstract situation and the available context
features, and can be declared explicitly with concept variables. A
creator can declare concept variables before defning their contents;
this provides a visual reminder to compose building blocks later for
the concept. For example, for a construction expressing ‘situations
to share a cheers’, a user can represent a smaller concept ‘drink-
ing an evening beer’ by declaring a concept variable, defning its
contents using context-features and logical operators, and using
the defned concept variable in a top-level concept variable named
‘share a cheers’.

Foraging for features involves both searching and browsing for
building blocks. Creators can either go in a top-down fashion by
using their declared concepts to guide the types of building blocks
they might look for, or a bottom-up fashion where they browse
through the available features to see which ones might be relevant.
A creator can use the Toolbar to navigate to building blocks based
on categories such as weather, time of day, time of week, and time
zone (Figure 3, Left of Middle). Creators can also use the Search
Interface (Figure 3, Far Left) to fnd context-features based on a
thousand place categories on Yelp. For example, a user expressing
‘having an evening beer’ could browse for features based on time
of day and fnd a ‘nighttime’ block to drag into the work area; they
might query the search interface for ‘beer’ to fnd relevant place
context-features to add to the construction.

Composing Representations starts after creators fnd several con-
text building-blocks which they combine together with logical oper-
ator blocks like and, or, not. Figure 3 shows an example of a logical
composition used in the defnition of ‘drinking an evening beer’ as
various place contexts for having a beer (‘barcrawl’, ‘tikibars’, ‘beer
and wine’).

4.2 Unlimited Vocabulary Search
Concept expressions can be underscoped in regards to the context-
features a creator decides to include. This can occur when working
with lengthy hierarchies of context-features (e.g., Yelp place cat-
egories), since designers can struggle to forage for features that
can represent their intermediate concepts. To mitigate underscop-
ing on detectable context-features, Afnder uses textual metadata
from available APIs (e.g., reviews from Yelp) to create an unlimited
vocabulary [17] of terms associated with the context features that
users can query for based on their conception. This allows a creator
to directly query for context features using aspects of a situation of
interest, e.g., based on objects that aford actions, actions that can

Afinder: Expressing Concepts of Situations using Context-Detectors CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Figure 3: Afnder’s Toolbar provides access to building blocks such as context features derived from weather, time, place in
addition to logical operators like and, or, not, =. From the toolbar, users can drag and drop building blocks into the Work Area
which is used to store relevant features and compose representations from building blocks. Afnder’s Search Interface returns
relevant place context-features. A button next to each ‘adds’ the feature to the work area.

be taken, activities that people are engaged with, etc. This helps de-
velopers discover context features they may have forgotten, and to
broadly shift their notions of the concept they are trying to express
and how to express it throughout the process of construction. For
example, using Afnder’s unlimited vocabulary search, the query
‘feld’ could match the feature ‘parks’ through a review that says
“Other aspects of the park include a people park with slides and
swings, soccer felds, baseball felds, and plenty of open space;” or
‘felds’ could match the feature ‘discgolf’ through a review that says
“The majority of the course is quite open and fat, playing around
some decent sized trees, grassy felds and pedestrian pathways that
are considered out of bounds.”

4.3 Refect and Expand Prompts
To mitigate underscoped concept expressions caused by design
fxation on intermediate experience concepts, Afnder provides
prompts that encourage users to refect on generalizable concepts
about why a context-feature is appropriate for the situated experi-
ence they are designing, and to expand their concept expression by
foraging for context-features using this generalizable concept.

Each context-feature or concept variable can be used as the
source of the refection; refection prompts can be activated for
any of these by clicking on the corresponding blue question mark;
see Figure 4. For example, on the left-side of Figure 4, a user has
added the context-feature ‘parks’ in their work area, and chooses
to refect by pressing the ‘?’ button associated with the ‘parks’
context-feature. The refection prompt asks them the question “Why
is ‘parks’ appropriate for the experience ‘situations to toss a frisbee’?”.
On the right-side of Figure 4, the user has proceeded to answer
by typing ‘open areas to play’. Upon pressing the tab key, a new
concept variable is created that represents this generalized notion.
They can subsequently use the search interface to fnd context-
features matching the concept ‘open areas to play’. We designed the

‘?’ refect button to be always visible and attached to the context-
features in the workspace after observing during early testing that
authors would sometimes forget that the refect button was a feature
they could use.

4.4 Simulation and Repair Tools
Given the challenge of knowing how a place context-feature ap-
plies to real-world cases based only its name, Afnder implements
a feature for viewing example locations for a context-feature of
interest (e.g., a list of the top 20 example locations tagged with
the context-feature ‘active’ in Chicago), so designers can form a
more accurate mental model of how a place category is used by
the Yelp context-provider. This can help answer questions about
context-features which are named in unexpected ways, such as
what types of places the context-feature ‘active’ refers to.

Beyond viewing example locations for individual context-
features, the full version of Afnder provides features for (A) simu-
lating the execution of concept expressions composed of multiple
context-features to help designers analyze real-world cases and la-
bel any that inaccurately represents the concept variable (as shown
in Figure 5, Left); and (B) supporting designers to repair their con-
cept expressions, so as to resolve outstanding issues in the execution
of the concept variable (as shown in Figure 5, Right).

Afnder’s Repair Tools supports two methods for repairing a
concept expression so they operate more accurately: (1) using logi-
cal operators to exclude specifc context-features; and (2) discarding
features that are too inaccurate to be useful. First, context-features
may not precisely match a concept (e.g., public gardens are parks but
are not good for frisbee tossing). To resolve this problem, the frst
method of repair supports designers in excluding specifc context-
features (e.g., defne ‘open spaces to play’ as ‘parks’ that are also not
‘gardens’). By doing this repair, a designer can still efectively add a
context-feature to their construction to increase coverage (e.g., most
parks are good for frisbee tossing), while ensuring that this addition

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Ryan Louie, Darren Gergle, and Haoqi Zhang

Figure 4: A series of two screenshots illustrates how a user might use the refect and expand prompts to create new generaliz-
able concept variables, and expand their eforts to forage for features.

A) Simulating Concept Variables, and Labeling Inaccurate Cases B) Repairing Concept Variables, and Resolving Issues

Figure 5: Designers can simulate concept expressions composed of multiple context-features (e.g., ‘parks’ or ‘beaches’ are
‘open spaces to play’). Simulation can reveal cases in which context-features may fail to accurately represent specifc concept
variables (e.g., some ‘parks’ include locations like a conservatory and a lily pool which are not ‘open spaces to play’). After
labeling these inaccurate cases, designers can repair concept expressions to make better use of existing context features (e.g.,
parks only if they are also not ‘gardens’ or ‘venues’). Simulating the repaired concept moves the ofending case to a list of
resolved cases.

.

does not sacrifce precision (e.g., so that special parks that don’t ft construction would inaccurately represent the high-level concept
‘open grassy area for play’ concept would not be identifed for the they were trying to express, and ultimately degrade the precision
situation or activity). To help designers quickly identify cases that of their expression.
would require this type of repair, the list of detected cases is ordered
by cases that are tagged with multiple context-features (a conser- 5 IMPLEMENTATION
vatory tagged ‘parks’, ‘gardens’, and ‘hiking’) appear before cases
tagged with a single context-feature (a beach tagged ‘beaches’).

Second, a context-feature may be too inaccurate to be useful (e.g.,
‘recreation’ mostly refers to indoor recreation centers and gyms
which are not appropriate for frisbee tossing). Thus, the second
method of repair allows a designer to discard this context-feature
from the construction. By recognizing when a context-feature is too
inaccurate and making the choice to discard it entirely, designers
are able to assess when a context-feature they’ve added to their

Afnder is a Meteor.js web application1 that uses Google’s Blockly
library [16] for its block-based construction interface. Afnder
uses Blockly to generate a concept expression’s corresponding
Javascript code (e.g., (parks || beaches) && !windy;) which is
a logical predicate that can be used by context-aware services to
check whether the user is in a situation that matches the concept
expression, or to produce a list of situations and locations that
would. Applications can integrate this generated code by requesting

1https://github.com/NUDelta/afnder

https://github.com/NUDelta/affinder

Afinder: Expressing Concepts of Situations using Context-Detectors CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

a user’s current context-features (e.g., Is the Yelp place category
‘park’ currently detected for a user? Is the user’s current detected
weather ‘windy’?) from a context-provider API and evaluating the
predicate. Afnder’s simulate and repair tool uses the generated
code to simulate the concept expression on real-world place venues.

Afnder’s unlimited vocabulary search engine was built by ap-
plying the term-frequency inverse-document frequency (TF-IDF)
statistic to a corpus of 1241 documents corresponding to Yelp place
category context-features. Each document comprised community-
authored reviews for a single place category (e.g., ‘parks‘) across
all listed places in 8 major metropolitan areas [23]. The reviews
associated with a place venue which is tagged with multiple place
categories (e.g., a public park tagged as ‘park’, and ‘playground’)
will be included in the text documents associated with all place
categories. During iterative prototyping and testing, we observed
that this also had the desirable side-efect of broadening the set of
returned place category context-features. Document relevance for
a query was based on the sum of TF-IDF values for all terms in a
query [35], and the 25 top place categories are returned.

Afnder’s feature for simulating and repairing concept expres-
sions uses the Yelp Fusion Business API [24] to return a list of real-
world places for a given city. Our implementation of simulating a
concept expression creates a list of locations by taking the set union
of the top 20 locations for each of the context-features in an expres-
sion (e.g., a concept expression open spaces = parks || beaches
has two context-features and will return 40 real-world locations for
a target city). Then, the set of positive predictions is obtained by
applying the concept expression’s corresponding Javascript code
to the list of location venues.

6 USER STUDY
We performed a comparison study to evaluate the extent to which
Afnder supports creators in efectively encoding their human
concepts of a situation into a machine representation using available
context-features. Specifcally, we conducted a between-subjects
study that compared authors’ use of the full version of Afnder
with all the features for overcoming the bridging challenges vs. a
baseline version of Afnder with a reduced set of features.

In this study we ask: RQ1: Does unlimited vocabulary search
help designers fnd relevant context-features, to overcome the chal-
lenge of a concept expression being underscoped? RQ2: Do refect
and expand prompts help designers stretch their concepts and ef-
forts to forage for context features? RQ3: Do simulation and repair
tools help designer’s recognize cases when a concept expression
does not operate as intended on real-world cases, to overcome
concept expression inaccuracies?

6.1 Method and Analysis
6.1.1 Experimental vs. Baseline Versions. For this between-subjects
study, we provided participants two versions of Afnder: an ex-
perimental version with all the core features for overcoming the
specifc bridging challenges (unlimited vocabulary, refect and ex-
pand prompts, simulation and repair tools), and a baseline version
without these features. Both versions support an opportunistic con-
struction process through its block-based environment where an
author can follow a top-down or bottom-up process at any time; and

both versions use the same set of base context-features including
Yelp place categories, time, and weather features.

However, the baseline does not include the core features that
address specifc challenges arising within the bridging problem.

(1) Instead of the unlimited vocabulary search, authors forage
for place category context-features using a simple text search
(e.g., searching ‘park’ will match context-features ‘parks’
and ‘parking lots’, whereas searching ‘frisbee’ returns no
place categories). We hypothesize that without unlimited
vocabulary, authors using the baseline will struggle to access
relevant features based on their conceptions because they
will not know the exact names of the place context-features.

(2) Authors using the baseline do not have explicit prompts for
refecting and expanding concept expressions. Without these
prompts, we hypothesize that users may fxate on their early
concepts of a situation, and thus have conceptually-narrower
searches for context-features.

(3) Authors using the baseline cannot simulate how their entire
concept expression operates on real-world cases, nor keep an
issue list to guide the repair of expressions. Instead, authors
are only provided the tool that allows them to view examples
of place venues for a single place category. This allows users
to clarify the usage of any context-features they are uncertain
about, such as ones that are named in unexpected ways
(e.g., what kinds of locations would be tagged on Yelp as
the place category “active”?). We hypothesize that without
the full set of simulate and repair tools, authors will miss
cases where their concept expression operates diferently
than they intended, which will result in concept expression
inaccuracies on real-world cases.

6.1.2 Participants. We recruited 14 participants from several un-
dergraduate HCI classes from a mid-sized university in the Mid-
western US. Everyone had some prior background in designing
computing technologies. While participants were not specifcally
selected to have a background in developing location-based or
context-aware computing applications, we provided them with suf-
fcient background material on the potential uses of our application
and how our application would detect end-user contexts; we de-
scribe the details of our background and tutorial procedure in the
next section. Each participant was compensated with a $25 gift card
for their participation in the 1 hour long study. For this between-
subjects study, 8 of the participants were assigned to use the version
of Afnder with all the technical features (unlimited vocabulary
search, refect and expand prompts, simulation and repair tools),
and the other 6 were assigned to use the baseline version without
all the technical features.

6.1.3 Study Procedure. Participants were asked to watch a 5 minute
background video prior to joining a video conference study session.
In this video, they learned about our vision for a context-aware,
social application use-case in which the app helps friends engage
in a digitally-mediated shared experience when they are in similar
situations at distance [32]. We described an example scenario of
how a friend in Chicago having an evening beer and another friend
in Taiwan drinking a morning tea could use the application to share
digitally-mediated cheers with their beverages. Participants were

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Ryan Louie, Darren Gergle, and Haoqi Zhang

told they would act as a designer of this context-aware application
that uses mobile context-features (e.g., place, weather, and time)
to detect aspects of a situation that would support engaging in
these shared experiences. Specifcally, they were told that using
Afnder, they would fgure out (1) what the possible situations are
where people can engage in the shared experience (e.g., raise their
beverages for a digitally-mediated cheers) and (2) how to express
these situations using context-features like Yelp place categories.

They were then given a guided, hands-on tutorial creating a
concept expression for “situations to share a cheers” using the
version of Afnder that they were assigned to (15 min); as the
experimental version had more features to teach, their tutorial
usually took longer. After the tutorial, users constructed up to two
concept expressions for situations to engage in shared experiences,
as time allowed (30-35 min). These situations included ‘awesome
situations to toss a frisbee’ and ‘situations for grabbing food that is
good for a cold day’.

With the full feature version, we expected users to expand their
notion of the concept they were expressing; therefore, these partic-
ipants naturally spent more time on the task, and often had time
to complete only one concept expression. With the baseline, par-
ticipants tended to naturally run out of ideas and complete their
concept expression early; thus, participants often had time to com-
plete two concept expressions in the time available. We observed
and recorded the participant’s construction process, and asked them
to talk-aloud to explain their decisions while creating the situation
detectors. Finally, they completed a post-study questionnaire and a
semi-structured interview (15 min).

6.1.4 Measures and Analysis. Our answers to the research ques-
tions are triangulated amongst 3 sources of data: (1) qualitative
descriptions and summary statics about the concept expression,
captured as it evolved during the construction process and once an
author has completed it; (2) qualitative observations of authors’ be-
haviors and usage of Afnder’s features; and (3) qualitative insights
about participants thoughts and strategies during their construc-
tion process. We opted to use this qualitative approach because we
can evaluate the core features of Afnder together in one interface
while still gaining insight into how using each of the core features
make a diference in how the concept expression evolves and how
an author’s thoughts and strategies change.

To summarize the created concept expression, we measured the
breadth of context-features included in the concept expressions by
counting the number of relevant place context-features included.

To answer RQ1, we noted search queries that were made and
which relevant context-features were added to the concept expres-
sion while using the unlimited vocabulary vs. the simple text search.
Additionally, we used talk-alouds and retrospective interviews to
understand (1) how the context-features a participant saw in the
search results infuenced their thoughts, and (2) how these updated
thoughts led to foraging and adding additional context-features.

To answer RQ2, we asked about moments when users activated
the refect and expand prompts. This included details about (1) the
initial idea they chose to refect on; (2) the general concept they
articulated that made their initial idea appropriate for the situation;
(3) how the general concept later infuenced their thoughts as they
talked-aloud; and (4) what actions they did shortly afterward, such

as unlimited vocabulary searches that followed or how their concept
expression evolved.

To answer RQ3, we looked for cases when users, after simulat-
ing their concept expressions, updated their concept expressions.
Through talk-alouds and revisiting these cases in the interview, we
gained a better understanding of (1) a user’s prior notions for how
the intended a concept expression to operate; (2) what real-world
case they found that posed an issue or surfaced a misconception
in how the concept expression operated; and (3) how they decided
to repair the concept expression through removing or explicitly
negating specifc context-features.

7 RESULTS
Across both versions of Afnder, our 14 participants (8 for experi-
mental, 6 for baseline) created a total of 20 concept expressions (10
for experimental, 10 for baseline). Figure 6 shows two constructions
that were made using the version of Afnder with all of its core fea-
tures. An example construction expresses ‘grabbing food for a cold
day’ as any places serving hot beverages (tea, cofeeshops, cofee),
food with soup (hotpot, ramen, soup), or spicy food (thai, japanese
curry, bbq, szechuan) and where the weather is cold. Another exam-
ple construction expresses ‘places to toss a frisbee’ as either open
outdoor public spaces (‘parks’, ‘beaches’, or ‘playgrounds’) where
the weather is clear and it is daytime, or open indoor public spaces
(including most ‘gyms’ or ‘recreation’ but excluding cases that sup-
port outdoor activities, e.g., ‘hiking’; or activities associated with
small spaces e.g., ‘boxing’). In both of these example cases, partici-
pants used Afnder to fesh out their concepts of the situation and
bridge to a wide range of detectable context-features. Participants
switched between top-down and bottom-up processes, allowing
their concepts to evolve while foraging for the lower-level context-
features. For example, a participant expressing “situations to throw
a frisbee” started by foraging for the frst places that came to mind
such as parks and beaches; after declaring a concept variable for
“outdoor public spaces” to unify these place context features, they
realized that several outdoor and indoor places supporting athletic
activities could also work, thereby expanding their eforts to forage
for a wider range of place contexts.

In contrast, Figure 7 highlights two example constructions that
were made using the baseline version of Afnder. One example
construction expresses ‘grabbing food for a cold day’ as when the
weather is cold and user is either eating soup (restaurants with
‘soup’), drinking hot chocolate or cofee (‘cafes’, ‘hong kong cafes’,
‘themed cafes’), drinking tea (places serving ‘tea’), but not eating ice
cream (places serving ‘ice cream’). Another example construction
expresses ‘situations to toss a frisbee’ as places with open felds
(parks or beaches), where there is warm weather (clear or hot), and
it is daytime. Similar to participants using the experimental version,
participants using the baseline were able to create concept variables
that linked their concepts of the situation to detectable context-
features. In addition, participants were also able to move between
top-down and bottom-up processes. For example, a participant
started by foraging for place context-features that matched their
initial concept of “drinking hot chocolate” and found many context-
features related to cafes; then, they created more concept variables

Afinder: Expressing Concepts of Situations using Context-Detectors CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Figure 6: Two concept expressions made with the full version of Afnder with all its features. The frst construction expresses
‘grabbing food for a cold day’ as having hot beverages (tea, cofeeshops, or cofee), spicy foods (thai, japacurry, bbq, or szechuan),
or food with soup (hotpot, ramen, or soup) and while the weather is cold. The second construction expresses ‘situations to toss
a frisbee’ as open outdoor public spaces (parks, beaches, or playgrounds, and when it is clear and daytime) and open indoor
public spaces (most gyms or recreation, but excluding cases with hiking or boxing.)

Figure 7: Two concept expressions made with the baseline version of Afnder without all of its core features. The frst con-
struction expresses “grabbing food for a cold day” as when the weather is cold and a user is eating soup, drinking hot chocolate
or cofee (cafes, hkcafe, themedcafe), drinking tea, or not having icecream. The second construction expresses “situations to
toss a frisbee” as open felds (parks,beaches) and when it is warm weather (clear and hot) and daytime.

for other hot foods one might fnd at cafes like “tea” and “soup” and opposed to more general concepts that would unify across context-
foraged for context-features matching these. features (e.g., hot beverages). As such, these concepts variables were

However, authors using the baseline declared concepts which often linked to one or two place context-features (e.g., eating soup
were closer to the detectable context features (e.g., drinking tea) as as ‘soup’). For participants who did declare more general concept

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Ryan Louie, Darren Gergle, and Haoqi Zhang

variables (e.g., open felds), they often struggled using the baseline
to forage for a wider range of context-features matching these
concepts.

We measured the concept expression for the breadth of context-
features included in their constructions. For the concept expression
‘grabbing food for a cold day’, the median construction had 11 place
context-features made with the full version of Afnder, while the
median construction had 8 context-features made with the baseline
version. For the concept expression ‘awesome situations to toss
a frisbee’, the median construction had 4.5 place context-features
when made with the full version of Afnder, while the median
construction made with the baseline had 2 place context-features.

Having described an overview of the concept expressions cre-
ated using both versions of Afnder, we now turn our attention
to describing how each of the core technical features (unlimited
vocabulary, refect and expand prompts, and simulation and repair
tools) supported designers’ construction processes.

7.1 Results for Unlimited Vocabulary Search
All 8 participants in the experimental condition used Unlimited
Vocabulary Search to forage for context-features from the Yelp
Places API that matched their initial concepts. For example, P7
tried to represent the concept of ‘snowy environments’ as a type
of situation for ‘grabbing food on a cold day’. By searching for
terms such as ‘ice rinks’ and ‘snow day’, they were able to fnd
several place context-features matching their concept (skatingrinks,
skiresorts, skischools). P1 said: “I liked to see other examples of other
[place contexts], I didn’t have to think about all these other [place
contexts] on my own.”

In contrast, participants using simple text search struggled to for-
age for context-features matching their conceptions. This happened
because the concept vocabulary users formed as search queries (e.g.,
‘spicy’, ‘grass’, ‘meadows’, ‘frisbee’) returned few or no matching
context-features. For instance, P7 expected various sport felds to
show up after searching ‘felds’, but ‘baseballfelds’ was the only
result. In contrast with the experimental condition, P9’s search for
a similar concept, ‘soccer feld’, using the Unlimited Vocabulary
Search helped them fnd ‘playgrounds’ and ‘college universities’ as
relevant context-features.

Beyond fnding detectable context-features matching their con-
ceptions, participants using Unlimited Vocabulary Search were
able to stretch and update their own concepts of the situation they
were trying to express. This happened while browsing through
the context-features in the search results that were associated but
not what they were expecting to fnd. We present some examples
from our user study where the search engine supported stretching
concepts (see Figure 8). For example, when asked how the unlim-
ited vocabulary search was helpful, P9 explained: “What comes up
in the [unlimited vocabulary search] suggestions already gives you
ideas. For example, after seeing soup, I shifted my thinking to soup
based queries, like pho and other soup noodle stuf... If I see something
related, but in a diferent way, it helps me generate more [concepts]
that I want to search.”

In comparison, for participants using simple text search, the
absence of related context-features led to stopping in their search for
place context-features and expressing their concepts. For instance,

when P6, a participant in the baseline condition, was asked how they
decide when they have completed constructing, they said, “When I
run out of tags to search for... after fnding ‘parks’ and ‘playgrounds’,
grass and lawns wasn’t showing me anything. Then I run out of ideas.”

7.2 Results for Refect and Expand Prompts
Refect and Expand prompts were used by 7 of the 8 experimen-
tal participants across 12 moments to articulate more generalized
concepts and create new concept variables. 5 of the 7 participants
used the articulated concepts to expand their eforts to forage for
new context-features. We show in Figure 9 several examples of
how refection prompts led to expanded foraging eforts. 4 of these
moments lead to successfully discovering new context-features that
were added to their concept expression; while in 2 other moments,
designers attempted to use the generalized concepts to search, but
were ultimately unsuccessful at discovering new features.

As one example of how refection prompts led to adding new
context-features to a construction, P5 refected on why their idea
of hot chocolate was appropriate for ‘grabbing food on a cold day’.
Upon refection, they realized that during winter holidays, “hot
chocolate” is good with other sweet, hearty baked goods – implying
that “hot” food isn’t the only attribute, but any sweet foods that
remind of winter would also be good to eat on a cold day. After
P5 answered the refection prompt, thereby creating a generalized
concept variable named ‘sweets to eat’, they began to forage for
place context-features matching this concept. By using searches
such as ‘desserts’ and ‘bakery’, they were able to add ‘desserts’ and
‘bakeries’ as additional place context-features to the construction.

However, for 2 participants, foraging for context-features us-
ing the generalized concept variable did not fnd relevant context-
features. For example, after P12 articulated how ‘parks’ are appropri-
ate ‘situations awesome to toss a frisbee’ because they are ‘outdoor
public spaces‘, they could not fnd relevant features when searching
for ‘open public spaces‘ (which returned contexts like ‘sharedof-
fcespaces‘, ‘libraries‘, ‘publicservicesgovt’, ‘galleries’, ‘community-
centers’). They tried to revise their query by searching ‘outdoors’,
but did not fnd any other context-features they did not already
have in their construction. This suggests that the generalized con-
cept variables created through refection may not always be useful
when used verbatim as search queries, which may require redesign-
ing the prompts to guide users to not only articulate the general
reasons for appropriateness, but also to form useful queries from
these concepts that are aligned with the underlying textual meta-
data (e.g., how others describe Yelp reviews). Additionally, users
of the unlimited vocabulary may need support in understanding
why their query is not returning results they are expecting, and
how they might revise their query to more efectively bridge to the
relevant context-features.

Some users used the prompts to refect and create generalized
concept variables, but did not aim to expand their foraging eforts
using these generalized concepts. Rather, 2 of the 7 participants
who activated the refect and expand prompts created a generalized
concept variable that unifed context-features that they had already
added to construction workspace. For example, P9 refected on why
‘szechuan’ was appropriate for ‘situations to grab food on a cold
day’, then created the concept variable ‘spicy foods’, and fnally

Afinder: Expressing Concepts of Situations using Context-Detectors CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Figure 8: Examples of queries made with the unlimited vocabulary search that helped designers discover context-features that
inspired updates to their notions of their concepts. After a designer had shifted their notions, they often continued searching
based on their updated notions and added new features.

Figure 9: Examples of how Refect and Expand prompts helped users refect on an idea part of their construction, articulate
concepts about what makes that idea appropriate, and expand their foraging eforts by subsequently searching and adding
new concepts and features to their construction.

used a logical ‘or’ operator to unify existing features like ‘szechuan’,
‘japacurry’, and ‘thai’.

We sought to understand when and why users activate the refec-
tion prompt during their construction process. Some participants
used the refection prompts during moments when they themselves
felt stuck. Participants often felt stuck when they could not fnd
additional place context features after trying several search queries.
For example, as P7 was trying to express the situation “food for
a cold day”, they felt stuck and fxated: “my mind keeps going to
snow days, and from the standpoint of that situation, I think I got [all
the context-features] out of that. So I think I should use a refection
prompt.” Others participants understood the refection prompts as
a primary way to create concept variables, and used the refect but-
ton to create concepts that unifed existing context-features: “Once
I equated the blue question mark as a way to create [a concept]
that linked [context-features] together with a logical expression,
I developed that association... and used it when I wanted to cre-
ate a general category for the features I had added” (P13). Overall,
authors initiated the prompts for refecting and expanding their
concepts during transition points in their process when they felt
they had stopped on their current task to forage for context-features.
In this way, its usage aligns with how Afnders was designed to
allow authors to move fexibly between foraging for context-feature
matching concepts (top-down) and feshing out concepts that could

link features (bottom-up) when issues or decisions arise during the
construction process.

7.3 Results for Simulate and Repair Tools
Afnder’s simulate and repair capabilities helped participants iden-
tify issues with how their concept expressions operated in real-
world locations, and refne concept expressions to be more accurate.
We present some examples from our user study where participants
used simulation to fnd issues in real-world cases and refne concept
expression to resolve issues; see Figure 10. Participants updated
their concepts when they saw items from simulation diferent from
their original mental image, helping enrich their understanding of
the nuances of how context-features actually apply to real-world
cases. As an example of this process (see Row 1 in Figure 10), P14
was originally thinking of ‘baseball felds’ as a ‘place for throwing
a frisbee’, but recognized through simulation that some baseball
felds are categorized as ‘stadiums and arenas’, which would make
it harder to access the grassy outfeld. Next, P14 used the repair
shop to update their concept expression for ‘open space with grass’
to include baseball felds that are not also stadiums and arenas.

In another example (see Row 2 in Figure 10), P3’s original con-
struction expressed ‘big open space’ as parks or beaches. Through
simulation, they realized that some places, like a Conservatory or
Lily Pool, are meant for formal events and activities and thus would
make for an inappropriate location to throw a frisbee. Next, P3 used

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Ryan Louie, Darren Gergle, and Haoqi Zhang

Figure 10: Examples of Afnder’s Simulate and Repair Tools helped users simulate their concept expression, identify real-
world cases that highlight misconceptions and raise issues in precision, and repair their concept expressions.

the Repair Shop’s Issue List to notice that the Conservatory was
tagged as a ‘garden’ and ‘park’, while the Lily Pool was tagged as
a ‘venue’ and ‘park’. To resolve these issues, the designer updated
their construction to express ‘big open space’ as parks or beaches
that are not also gardens or venues.

We were interested in how usage difered between simulate and
repair capabilities in the full version of Afnder versus the feature
for viewing example locations for a single place context-feature.
Many participants simulated concept expressions once they had
completed their representation for a concept variable. For example,
P12 used the simulate feature composing together context-features
for a ‘warm foods enjoyed indoors’ concept; they said: “when I
simulate my concept I am trying to fnd [location] options that don’t
ft. But I’m looking and there’s really nothing that stands out.” When
designers did fnd location options that did not match their concept,
they would label these issue locations and proceed to the repair
shop to refne the concept expressions to resolve the issues. In this
way, the tools for simulating an entire representation helped users
to complete a representation of a concept variable, simulate to see
if any issues arose for any of the multiple context-features, and
resolve any of these issues as they arose.

In contrast, a majority of participants used view example loca-
tions to understand a specifc context-feature they were uncertain
about. For instance, P11 thought the context-feature ‘active’ might
be relevant for tossing a frisbee, but did not know what this context-
feature meant based on its name; viewing example places helped
them understand that ‘active‘ contained many indoor gym and
activity centers that were irrelevant for the ‘spacious and nature’
concept they were trying to express. In another case, P14 chose to
view example places of ‘bbq’ because they thought that it would
apply to locations where one can use a grill outside to barbecue,

which is inappropriate for ‘good situations to grab food on a cold
day’. Instead, the examples were barbeque restaurants, which they
felt matched the situation they were expressing. In general, viewing
example locations supported a designer’s while they foraged for
features, helping them understand whether any individual feature
they felt uncertain should be included in the expression.

However, view example locations can only identify misconcep-
tions for context-features a participant chooses to inspect. For exam-
ple, P11 said: “I didn’t need to view example places for ‘campgrounds’
and ‘baseballfelds’ because I already know what those types of places
are.” This suggests that if participants feel certain about the context-
features, they may not choose to view example places for those
features. However, this same participant later simulated the entire
concept expression, and found nuances in how a context-feature
belonging to the expression applies, such as how ‘campgrounds’
that support ‘rafting’ would not apply to their concept because
such locations would have more rivers instead of open grassy areas
required for tossing a frisbee. This suggests that simulating and
refning a concept expression after they have completed it serves
a role in surfacing inaccuracies in how a context-feature detects
real-world places, without designers having to explicitly look for
them.

8 DISCUSSION
Having demonstrated how Afnder can help authors express their
concepts of a situation to machines, we revisit the core ideas behind
Afnder, discuss how they may generally enable the expression
layer between human concepts and machine representations, and
envision the role of expression tools for developing intelligent
applications that facilitate human activities and experiences.

Afinder: Expressing Concepts of Situations using Context-Detectors CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

8.1 Enable the Expression Layer between
Human Concepts and Machine
Representations

In this work, we uncovered a set of bridging challenges that arise
when designers of context-aware applications express conceptually
rich situations that are several layers of abstraction removed from
the underlying machine features. Afnder’s design principles are
distinguished from most other context programming tools, as they
explicitly support human cognition when working with context-
features. To support the bridging between human concepts of a
situation and machine representations, Afnder supports two inter-
connected cognitive processes. First, Afnder helps designers fesh
out and expand their concepts for how a situation afords engaging
in a human activity or experience. Second, Afnder helps designers
link their concepts to machine-detectable context-features.

8.1.1 Fleshing out and Expanding Human Concepts. We found that
expanding one’s conceptual notions was important for helping
designers explore the conceptual space and overcome challenges
with underscoped concept expressions. Designers who used the
refect and expand prompts stretched their concepts of a situation by
refecting on why a context-feature they added was appropriate for
the situation they were trying to express; this process of using the
prompts inspired new searches, ultimately helping with overcoming
underscoping of concepts. Additionally, designers who used the
unlimited vocabulary search tool encountered context-features that
shifted their notions of the situation they were trying to express;
these updates led to expanding their search queries for additional
context-features.

The core ideas behind these two techniques for conceptual
stretch have parallels to existing research tools for conceptual
ideation and overcoming design fxation. First, Afnder’s refect and
expand tools support conceptual stretching by scafolding authors
to re-represent their initial ideas at a higher-level of abstraction,
to help designers remember other contexts that might also apply.
This core idea adapts methods for re-representing general linguistic
terms to increase the chances that people recall additional ideas
from other parts of the conceptual space [28]. This literature uses
these methods to help product designers remember useful analogs,
i.e., solutions that can be adapted from other domains to solve their
current design problem. In contrast, we use it to support context-
aware application designers to re-represent their human concept
of a situation at diferent levels of abstraction, so that they can fnd
multiple ways of expressing it using context-features.

Second, Afnder’s search tools led to conceptual stretching in
several cases by helping with the discovery of place contexts that
were conceptually diferent from their initial concepts. Within HCI,
several creative ideation tools have also supported the search and
discovery of example ideas for the purposes of inspiring and infu-
encing a designer’s concepts [38, 39, 41]. Many of these tools for
supporting conceptual stretch have been isolated to the concept-
ideation phases of the design process, where designers are sketching
a description or image of a product design idea. In contrast, with
Afnder, searching for conceptually-inspirational example items is
interconnected with other stages of the design process like fnding
implementable forms for concepts—as the unlimited vocabulary

search tool can serve the dual-purposes of stretching a designer’s
concepts, and helping them fnd matching context-features for an
existing concept.

Supporting cognitive processes like conceptual stretching will be
important for other design or creative processes in which ideation
and implementation are interconnected processes. One such cre-
ative process is in the feld of human-AI co-creation with generative
models, where users must express their creative concepts through
a collaboration with an AI capable of generating content. Within
the domain of music co-creation, composers must fesh out their
concepts for how to achieve a creative goal (e.g,. expressing the
emotions of sad and stuck in the music), while also strategizing
on how to implement their concepts through using the available
controls to steer the AI to generate music that expresses their in-
tent [31]. Studies of human-AI music co-creation have observed
cases where a human creator will change their own concepts of
how to express a human emotion through music, based on interact-
ing with music alternatives generated by the AI [30]. This fnding
represents a case where the exploration of implementable solutions
can inspire refnement of human concepts. In addition to example-
driven conceptual shifts, such tools can encourage refection and
expansion of concepts through re-representing concepts at diferent
levels of abstraction.

8.1.2 Linking Human Concepts and Implementable Machine Repre-
sentations. In addition to coming up with concepts for solutions,
Afnder also supports fnding an implementable form–in that it
helps designers translate their concepts into machine representa-
tions using detectable context-features. The fnal output is a piece of
code that uses detectable context-features as input, and can be used
in an intelligent context. The problem Afnder solves makes it dis-
tinguished from conceptual ideation tools for this reason. Afnder
efectively supports this translation process by providing (1) a rich
vocabulary in which authors can query the available set of machine
features, and (2) tools for checking how a machine’s features may
or may not accurately represent a designer’s concepts on real-world
cases.

Afnder’s core ideas have parallels with interactive machine
learning paradigms, such as active learning and machine teaching.
In this setup, a human evaluates and refnes a machine represen-
tation, such as machine classifcation model, by testing it on new
and existing cases and changing the machine’s representations—
either indirectly via providing labels to a machine learner [2], or
more directly by specifying or removing features in the represen-
tation [6]—to improve the machine’s ability to accurately identify
the desired concept. Most of this work typically relies on humans
to provide labels of a concept so that a learning algorithm can in-
fer which machine features might be relevant to include or to put
greater weight on. Afnder takes a diferent approach, allowing
a human’s concepts, externalized through natural language, to be
used as queries for discovering which machine features could be use-
ful. We argue that this is an efective and complementary approach
by letting humans fnd useful machine representations through us-
ing a human’s richer notions of the concept. This approach should
be useful when the machine features are too numerous to browse
through, but do have semantically-meaningful metadata that can
be used for querying.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Ryan Louie, Darren Gergle, and Haoqi Zhang

Bridging problems can manifest in other domains where hu-
mans must express their rich concepts into implementable machine-
representations. As we have discussed, bridging problems are a
marriage of the problems of conceptual ideation and fnding imple-
mentable machine representations for concepts. As such, tools like
Afnder which overcome bridging challenges need to embrace ideas
from both literatures on design concept ideation and interactive
machine teaching. We argue that the next generation of expression
tools will closely support the processes of feshing out concepts and
linking to machine representations. There is a double loop between
humans refning their mental concepts, and refning the machine
representations too. In this way, construction processes, like the
one Afnder aims to support, help to create expressions that are
more human, while also more detectable.

8.2 Imbue machines with an understanding of
human situations and the experiences and
activities they aford

Two decades ago, Abowd and Mynatt envisioned a near future
in which computing technologies would augment and beneft our
everyday lives. Everyday computing would support a mode of con-
tinuous interaction where computing technologies were no longer
just a localized tool, but a constant companion that runs in the back-
ground, and could act opportunistically to promote the informal and
unstructured activities of our everyday lives, from orchestrating
tasks, to communicating with family and friends [1]. At the same
time, researchers began prototyping the types of context-aware ap-
plications to step towards this vision, largely enabled by technical
advances in sensors and algorithms for inferring aspects of human
context, as well as frameworks and toolkits that made it easier to
write applications using sensors and component detectors [10]. Yet
amidst the technical opportunities aforded by such advances, it
became apparent that the importance of context-aware computing
extended beyond the contextual factors that machines can detect
(e.g., spatial location, user identity, proximity of people and devices).
Equally important was considering how these contextual factors
contribute to the meaningfulness of humans acting and relating in
situations [14].

In some ways, these challenges still exist within the current land-
scape of technologies. The technologies we have today—including
the variety of commercially-available physical and virtual sensors
(e.g., cameras, smart home devices, location-based metadata, so-
cial media and application usage) and the machine learning and
algorithms for processing this sensor data—are starting to give ap-
plications a richer understanding of people’s everyday worlds. Yet,
to really leverage these component detectors to create applications
that have an awareness of our human ways of acting and relating in
situations, application designers ultimately need to bridge between
their human concepts of a situation and the machine’s available
detectors. That’s where tools like Afnder and support for bridging
becomes ever more important.

In the near future, as emerging technologies like augmented re-
ality (AR) and virtual reality (VR) will likely take an increasing role
in mediating our social interactions and personal activities within
everyday contexts [21], a richer understanding of our human situa-
tions in these environments will be important for ensuring these

technologies can be aware of and facilitate the experiences users
want to have. Devices for AR, such as AR glasses and mixed reality
headsets, will have access to the familiar set of context-features
based on location, activity, and time that current mobile context-
aware platforms provide—as well as additional context-features
such as object-classes recognized through computer vision [25].
While these future technologies will be able to detect aspects about
a user’s context, such as the place they are located and or the objects
in front of them, tools like Afnder and support for bridging will
be required to imbue these applications with a deeper understand-
ing of these human situations and the experiences and activities
aforded in them. We anticipate that tools for expressing the human
ways of relating and acting in situations will be important for facili-
tating user social experiences and activities occurring in VR as well.
Collaborative virtual environments should have a sense of place,
where there are social norms and understandings of what experi-
ences or activities are appropriate in these environments [15, 19];
thus, systems that facilitate interactions in these virtual environ-
ments should have an understanding of human experiences and
activities that can take place in these situations too. While some
virtual places may borrow the social norms from the real-world
physical places they are modeled after (e.g., a VR bar or cafe), it will
be important that application designers have the tools to express
their concepts of how virtual situations may difer from their phys-
ical situation counterparts, and what experiences and activities in
virtual reality are aforded and appropriate in them.

9 LIMITATIONS AND REMAINING
OBSTACLES

In our fnal user study, we did not recruit authentic designers with
prior experiences creating context-aware applications. Instead, par-
ticipants were novices from an undergraduate design and HCI cur-
riculum. Accounting for this, rather than focusing on how authentic
context-aware designers perceive the efectiveness of Afnder, we
sought to understand how Afnder’s core features can help over-
come specifc bridging challenges–which can arise for any designer,
no matter their specifc background. In future studies, we could
gain feedback from authentic, context-aware application designers
and better understand how they imagine tools like Afnder being
useful for expressing situations for their application use-cases, and
adapted as part of their own development workfows.

Afnder was built and tested for location-based contexts, such as
place venues that one might encounter while being mobile across
one’s day. By leveraging Yelp place categories, Afnder is more use-
ful for describing situations that could occur at places in a town or
city such as parks or types of restaurants but currently less useful for
describing situational contexts that occur within the home or ofce
as detected by indoor sensors. To expand the set of detectable con-
texts, future developments of Afnder could include additional base
context-features beyond Yelp place categories. When extending this
context-set, it would be important to consider whether it is suf-
cient to create another toolbar list that a user can browse through,
or whether techniques like the unlimited vocabulary search would
be needed to help users discover context-features. For example, for
context-features describing diferent areas of a home (e.g., dining

Afinder: Expressing Concepts of Situations using Context-Detectors CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

room, kitchen, bathroom, garage, backyard), it may be sufcient to
list them in Afnder’s toolbar for users to browse through.

One core assumption of this work is that an application designer
has an complete and representative understanding of the situation
to be detected, and thus is the appropriate person to construct a
concept expression. We made this assumption, frst, because we felt
application designers would be equipped to express situations that
are commonly-understood as socially-appropriate for an experience
(e.g., a park used as an event venue is generally less appropriate
for play activities like tossing a frisbee) or where characteristics of
the physical environment would generally aford certain actions
or activities (e.g., an open area supports tossing a frisbee); second,
we believed that designers using Afnder would encode multiple,
diverse concepts of a situation due to the nature of their task—which
was to express a diverse set of contexts in which to engage in a
digitally-mediated, shared experience—in order to promote more
opportunities for socially connecting.

Nonetheless, issues can arise when an application designer’s
concept of situations is not commonly shared with the end-user
who will encounter these situations, perhaps due to diferences
in personal preferences or cultural understanding. For example,
end-users may have their own personal interpretation of a concept
for a situation which difers from the application designer’s con-
cept of it (e.g., an end user might prefer soupy foods over spicy
foods for “food good for a cold day”). If a context-aware application
uses a concept expression which does not align with end-users’
concepts of the situation, the app will try to facilitate the activity
in situations that some end-users will not agree with. Therefore, a
promising direction for future work is providing methods and tools
that can account for multiple personal or cultural interpretations
of the situations that are appropriate for activities. Future research
might develop expression tools that would support multiple au-
thors’ involvement in the construction and customization of how
concept expressions operate, in order to be accountable to these
diverse end-users concepts of a situation. Pursuing such a direction
would build upon foundational work on intelligibility, account-
ability, and control for end-user interaction with context-aware
applications [4, 12]. Afnder’s concept expressions—logical predi-
cates which are composed of semantically-meaningful intermediate
concepts and context-features—are in an intelligible representa-
tion that makes them good candidates for supporting this desired
control and customization by other authors.

10 CONCLUSION
In this paper, we sought to enable designers of context-aware ap-
plications to more easily express their ideas of a conceptually-rich
human situation and the interactions they aford to machines, so
that the applications can be aware and responsive to such situa-
tions across distributed contexts. To do this, we created Afnder, a
block-based programming environment that supports designers in
following an efective construction for bridging from their human
concepts of a situation into a machine representation using avail-
able context-features. Afnder’s technical contribution includes 3
core features designed to overcome challenges when constructing
concept expressions: (1) an unlimited vocabulary search for discov-
ering features they may have forgotten; (2) prompts for refecting

and expanding their concepts used for organizing and foraging for
features; and (3) simulation and repair tools for identifying and re-
solving issues with the precision of concept expressions on real use-
cases. In our studies, we show that these features can (1) mitigate
underscoped expressions by helping designers discover context-
features relevant to their concepts, (2) stretch people’s concepts for
what aspects they consider to be important for enabling interactions
in these situations, and (3) uncover and resolve mismatches in how
a creator expected their concept expression to operates vs. how it
actually executes across real-world, distributed contexts. Our work
with Afnder represents an exciting direction for the development
of intelligent and context-aware applications, where we explicitly
focus on advancing the capabilities of humans to bridging between
their ideas and available machine representations, rather than only
work to develop better component detectors.

Our current design of Afnder provides numerous interface tech-
niques to support efective cognition processes as designers bridge
between their concepts and the machine representations. In future
work, we envision that AI techniques like semantic embeddings
and knowledge graphs could play a larger role in supporting the
human during the construction process. As one example, using lan-
guage embeddings [33] could enable ways to recommend concepts
and vocabulary that would be better aligned with what humans
actually want (e.g., if the term ‘spacious’ is returning undesirable
place contexts that are indoors, we might add the term ‘outdoors’
to the embedding to direct the search). In another direction, com-
monsense knowledge graphs [5] could help users traverse a graph
of related concepts to explore and discover new concepts.

ACKNOWLEDGMENTS
The authors thank Kapil Garg, Garrett Hedman, Spencer Carlson,
Dan Rees Lewis, Kristine Lu, Katie Cunningham, Leesha Maliakal
Shah, Yongsung Kim, and many other members of the Delta Lab at
Northwestern for design feedback and literature help; the students
of the DTR program at Northwestern for design and implementa-
tion feedback; and Carrie Cai, Andrés Monroy-Hernandez, Jeremy
Birnholtz for their thoughtful insights on our contributions. This
research was supported in part by a Google Faculty Research Award
and by the National Science Foundation under award IIS-1618096.

REFERENCES
[1] Gregory D Abowd and Elizabeth D Mynatt. 2000. Charting past, present, and

future research in ubiquitous computing. ACM Transactions on Computer-Human
Interaction (TOCHI) 7, 1 (2000), 29–58.

[2] Saleema Amershi, Maya Cakmak, William Bradley Knox, and Todd Kulesza. 2014.
Power to the people: The role of humans in interactive machine learning. Ai
Magazine 35, 4 (2014), 105–120.

[3] Linden J Ball and Bo T Christensen. 2019. Advancing an understanding of design
cognition and design metacognition: Progress and prospects. Design Studies 65
(2019), 35–59.

[4] Victoria Bellotti and Keith Edwards. 2001. Intelligibility and accountability:
human considerations in context-aware systems. Human–Computer Interaction
16, 2-4 (2001), 193–212.

[5] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian Becker,
Richard Cyganiak, and Sebastian Hellmann. 2009. DBpedia-A crystallization
point for the Web of Data. Journal of web semantics 7, 3 (2009), 154–165.

[6] Michael Brooks, Saleema Amershi, Bongshin Lee, Steven M. Drucker, Ashish
Kapoor, and Patrice Simard. 2015. FeatureInsight: Visual support for error-driven
feature ideation in text classifcation. In 2015 IEEE Conference on Visual Analytics
Science and Technology (VAST). 105–112. https://doi.org/10.1109/VAST.2015.
7347637

https://doi.org/10.1109/VAST.2015.7347637
https://doi.org/10.1109/VAST.2015.7347637

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

[7] Nathan Crilly and Carlos Cardoso. 2017. Where next for research on fxation,
inspiration and creativity in design? Design Studies 50 (2017), 1–38.

[8] David Dearman, Timothy Sohn, and Khai N. Truong. 2011. Opportunities Exist:
Continuous Discovery of Places to Perform Activities. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (Vancouver, BC, Canada)
(CHI ’11). Association for Computing Machinery, New York, NY, USA, 2429–2438.
https://doi.org/10.1145/1978942.1979297

[9] David Dearman and Khai N Truong. 2010. Identifying the activities supported
by locations with community-authored content. In Proceedings of the 12th ACM
international conference on Ubiquitous computing. 23–32.

[10] Anind K Dey, Gregory D Abowd, and Daniel Salber. 2001. A conceptual frame-
work and a toolkit for supporting the rapid prototyping of context-aware appli-
cations. Human–Computer Interaction 16, 2-4 (2001), 97–166.

[11] Anind K Dey, Rafay Hamid, Chris Beckmann, Ian Li, and Daniel Hsu. 2004. a
CAPpella: programming by demonstration of context-aware applications. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM, 33–40.

[12] Anind K. Dey and Alan Newberger. 2009. Support for Context-Aware Intelligi-
bility and Control. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (Boston, MA, USA) (CHI ’09). Association for Computing Ma-
chinery, New York, NY, USA, 859–868. https://doi.org/10.1145/1518701.1518832

[13] Anind K Dey, Timothy Sohn, Sara Streng, and Justin Kodama. 2006. iCAP:
Interactive prototyping of context-aware applications. In International Conference
on Pervasive Computing. Springer, 254–271.

[14] Paul Dourish. 2001. Seeking a foundation for context-aware computing. Human–
Computer Interaction 16, 2-4 (2001), 229–241.

[15] Paul Dourish. 2006. Re-space-ing place: " place" and" space" ten years on. In Pro-
ceedings of the 2006 20th anniversary conference on Computer supported cooperative
work. 299–308.

[16] Neil Fraser. 2015. Ten things we’ve learned from Blockly. In Blocks and Beyond
Workshop (Blocks and Beyond), 2015 IEEE. IEEE, 49–50.

[17] George W. Furnas, Thomas K. Landauer, Louis M. Gomez, and Susan T. Dumais.
1987. The vocabulary problem in human-system communication. Commun. ACM
30, 11 (1987), 964–971.

[18] Harish Haresamudram, Apoorva Beedu, Varun Agrawal, Patrick L Grady, Irfan
Essa, Judy Hofman, and Thomas Plötz. 2020. Masked reconstruction based self-
supervision for human activity recognition. In Proceedings of the 2020 International
Symposium on Wearable Computers. 45–49.

[19] Steve Harrison and Paul Dourish. 1996. Re-place-ing space: the roles of place
and space in collaborative systems. In Proceedings of the 1996 ACM conference on
Computer supported cooperative work. 67–76.

[20] Barbara Hayes-Roth and Frederick Hayes-Roth. 1979. A cognitive model of
planning. Cognitive science 3, 4 (1979), 275–310.

[21] Ilyena Hirskyj-Douglas, Anna Kantosalo, Andrés Monroy-Hernández, Joelle
Zimmermann, Michael Nebeling, and Mar Gonzalez-Franco. 2020. Social AR:
Reimagining and Interrogating the Role of Augmented Reality in Face to Face
Social Interactions. In Conference Companion Publication of the 2020 on Computer
Supported Cooperative Work and Social Computing. 457–465.

[22] Scott Hudson, James Fogarty, Christopher Atkeson, Daniel Avrahami, Jodi Forl-
izzi, Sara Kiesler, Johnny Lee, and Jie Yang. 2003. Predicting human interruptibil-
ity with sensors: a Wizard of Oz feasibility study. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. ACM, 257–264.

[23] Yelp Inc. 2020. Yelp Open Dataset. https://www.yelp.com/dataset.
[24] Yelp Inc. 2021. Yelp Fusion API. https://www.yelp.com/developers/

documentation/v3.
[25] Tanya R Jonker, Ruta Desai, Kevin Carlberg, James Hillis, Sean Keller, and Hrvoje

Benko. 2020. The Role of AI in Mixed and Augmented Reality Interactions. In
CHI2020 ai4hci Workshop Proceedings. ACM.

[26] Harmanpreet Kaur, Alex C Williams, Daniel McDuf, Mary Czerwinski, Jaime
Teevan, and Shamsi T Iqbal. 2020. Optimizing for happiness and productivity:
Modeling opportune moments for transitions and breaks at work. In Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems. 1–15.

[27] Gierad Laput and Chris Harrison. 2019. Sensing fne-grained hand activity with
smartwatches. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems. 1–13.

[28] Julie S. Linsey, Arthur B. Markman, and Kristin L. Wood. 2012. Design by
Analogy: A Study of the WordTree Method for Problem Re-Representation.
Journal of Mechanical Design 134, 4 (04 2012). https://doi.org/10.1115/1.
4006145 arXiv:https://asmedigitalcollection.asme.org/mechanicaldesign/article-
pdf/134/4/041009/5606684/041009_1.pdf 041009.

[29] Google LLC. 2021. Google Awareness API. https://developers.google.com/
awareness/.

[30] Ryan Louie, Andy Coenen, Cheng Zhi Huang, Michael Terry, and Carrie J Cai.
2020. Novice-AI music co-creation via AI-steering tools for deep generative
models. In Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems. 1–13.

[31] Ryan Louie, Jesse Engel, and Anna Huang. 2021. Expressive Communication: A
Common Framework for Evaluating Developments in Generative Models and

Ryan Louie, Darren Gergle, and Haoqi Zhang

Steering Interfaces. arXiv:2111.14951 [cs.HC] https://arxiv.org/abs/2111.14951
[32] Ryan Louie, Kapil Garg, Jennie Werner, Allison Sun, Darren Gergle, and Haoqi

Zhang. 2021. Opportunistic Collective Experiences: Identifying Shared Situations
and Structuring Shared Activities at Distance. Proceedings of the ACM on Human-
Computer Interaction 4, CSCW3 (2021), 1–32.

[33] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jefrey Dean. 2013.
Distributed representations of words and phrases and their compositionality.
arXiv preprint arXiv:1310.4546 (2013).

[34] Mehrab Bin Morshed, Koustuv Saha, Richard Li, Sidney K D’Mello, Munmun
De Choudhury, Gregory D Abowd, and Thomas Plötz. 2019. Prediction of mood
instability with passive sensing. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies 3, 3 (2019), 1–21.

[35] Juan Ramos. 2003. Using tf-idf to determine word relevance in document queries.
In Proceedings of the First instructional Conference on machine learning, Vol. 242.
133–142.

[36] Alejandro Rivero-Rodriguez, Paolo Pileggi, and Ossi Antero Nykänen. 2016.
Mobile Context-Aware Systems: Technologies, Resources and Applications. In-
ternational Journal of Interactive Mobile Technologies (iJIM) 10, 2 (Apr. 2016), pp.
25–32. https://doi.org/10.3991/ijim.v10i2.5367

[37] Daniel Salber, Anind K Dey, and Gregory D Abowd. 1999. The context toolkit:
aiding the development of context-enabled applications. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. ACM, 434–441.

[38] Pao Siangliulue, Kenneth C. Arnold, Krzysztof Z. Gajos, and Steven P. Dow. 2015.
Toward Collaborative Ideation at Scale: Leveraging Ideas from Others to Generate
More Creative and Diverse Ideas. In Proceedings of the 18th ACM Conference
on Computer Supported Cooperative Work & Social Computing (Vancouver, BC,
Canada) (CSCW ’15). Association for Computing Machinery, New York, NY, USA,
937–945. https://doi.org/10.1145/2675133.2675239

[39] Pao Siangliulue, Joel Chan, Steven P. Dow, and Krzysztof Z. Gajos. 2016. Idea-
Hound: Improving Large-Scale Collaborative Ideation with Crowd-Powered Real-
Time Semantic Modeling. In Proceedings of the 29th Annual Symposium on User
Interface Software and Technology (Tokyo, Japan) (UIST ’16). Association for Com-
puting Machinery, New York, NY, USA, 609–624. https://doi.org/10.1145/2984511.
2984578

[40] Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and Michael L Littman. 2014.
Practical trigger-action programming in the smart home. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. ACM, 803–812.

[41] Xiaotong (Tone) Xu, Rosaleen Xiong, Boyang Wang, David Min, and Steven P.
Dow. 2021. IdeateRelate: An Examples Gallery That Helps Creators Explore Ideas
in Relation to Their Own. Proc. ACM Hum.-Comput. Interact. 5, CSCW2, Article
352 (oct 2021), 18 pages. https://doi.org/10.1145/3479496

https://doi.org/10.1145/1978942.1979297
https://doi.org/10.1145/1518701.1518832
https://www.yelp.com/dataset
https://www.yelp.com/developers/documentation/v3
https://www.yelp.com/developers/documentation/v3
https://doi.org/10.1115/1.4006145
https://doi.org/10.1115/1.4006145
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/134/4/041009/5606684/041009_1.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/134/4/041009/5606684/041009_1.pdf
https://developers.google.com/awareness/
https://developers.google.com/awareness/
https://arxiv.org/abs/2111.14951
https://arxiv.org/abs/2111.14951
https://doi.org/10.3991/ijim.v10i2.5367
https://doi.org/10.1145/2675133.2675239
https://doi.org/10.1145/2984511.2984578
https://doi.org/10.1145/2984511.2984578
https://doi.org/10.1145/3479496

	Abstract
	1 Introduction
	2 Background
	3 The Bridging Problem
	3.1 Underscoped on Features
	3.2 Underscoped on Concepts
	3.3 Concept Expression Inaccuracies

	4 Affinder
	4.1 Block-Based Construction Environment
	4.2 Unlimited Vocabulary Search
	4.3 Reflect and Expand Prompts
	4.4 Simulation and Repair Tools

	5 Implementation
	6 User Study
	6.1 Method and Analysis

	7 Results
	7.1 Results for Unlimited Vocabulary Search
	7.2 Results for Reflect and Expand Prompts
	7.3 Results for Simulate and Repair Tools

	8 Discussion
	8.1 Enable the Expression Layer between Human Concepts and Machine Representations
	8.2 Imbue machines with an understanding of human situations and the experiences and activities they afford

	9 Limitations and Remaining Obstacles
	10 Conclusion
	Acknowledgments
	References

