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Abstract

Human-AI Interface Layers: Enhancing Communication of Intent for AI-Assisted

Creative Pursuits and Social Experiences

Ryan Louie

While early uses of artificial intelligence (AI) aimed to automate repetitive and bur-

densome tasks, AI shows great potential in assisting users in human domains of personal

meaning and importance, from creative pursuits to social experiences. These human do-

mains require that AI have an understanding and sensitivity to a user’s personal ideas and

knowledge. To assist a novice creator who lacks formal training, a generative AI partner

must understand the person’s creative ideas. An AI agent can appropriately identify op-

portune moments to connect with friends/colleagues from afar, only if it has cultural and

tacit knowledge of the situations and activities in which people desire to connect. Despite

significant advances in AI capabilities, conventional interfaces for AI can make it challeng-

ing for people to communicate their ideas and expectations. This dissertation proposes a

crucial layer in an AI-powered application’s stack called the Human-AI Interface Layer,

which reconfigures existing AI capabilities to empower people’s effective communication.
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They provide (1) intuitive constructs for communicating ideas in ways AI systems can act

upon and (2) interactive tools for forming, reflecting upon, and clarifying their intentions.

I developed three Interface Layers to enhance communication of intent to existing AI

capabilities. First, users struggle to convey fine-grained semantics and control pieces of

a generated artifact, when the AI’s interface only allows indirect influence over how the

entire artifact is generated. To resolve this, I propose a Steering Interface Layer that

partitions and constrains generated outputs to support incrementally guiding AI outputs

toward desired directions. Second, when a person’s ideas for their AI-enabled creation are

conceptually-rich and sometimes vague, people can struggle to translate these high-level

concepts to the lower-level constructs for AI systems to understand and act upon. As

such, I contribute an Expression Interface Layer equipped with cognitive bridging tools

that help people address this semantic gap by fleshing out their high-level concepts and

foraging for relevant and precisely operating AI constructs. Third, when an individual

provides explicit instructions to an AI agent, the agent’s actions during execution can still

disappoint when it encounters constraints that prevent implicit expectations from being

satisfied. To resolve this, I developed an Execution Interface Layer for recognizing and

stating implicit expectations so an AI agent can appropriately adjust after handoff.

More generally, a mismatch might always exist between what people envision for

human pursuits and what AI assistants can currently understand about them. This

thesis shows that Human-AI Interface Layers for intention formation and articulation

can empower creators and designers to communicate their ideas and intentions for AI

assistance, despite existing AI’s inherently limited interfaces for doing so.
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CHAPTER 1

Introduction

Advances in AI are enabling developers to integrate a variety of AI capabilities into

user-facing applications. For example, the advent of generative AI models for producing

coherent and high-quality outputs has opened up opportunities to integrate them into a

variety of content-production applications. Amidst growing concerns around the harms

that generative AI might cause in automating content production entirely, more designers

and researchers have begun emphasizing AI’s usefulness as a co-creator and an assistant to

enhance, rather than replace, human creators. While some AI-powered applications use AI

in interactive and collaborative uses, other AI advances are used in systems running in the

background, that opportunistically surface information and proactively take action. For

example, the accuracy of pattern recognition, along with the ubiquitousness of personal

data and sensors, has created opportunities to integrate contextual inferences into AI-

powered applications for tracking important attributes and surfacing contextually relevant

reminders, content, or experiences. Such inferences are based on large labeled datasets

of specific categories of interest [82], and often leverage pattern recognition algorithms

to infer contextual attributes along dimensions of activity [60, 93], mood [108], and

environment [138, 112]. Since these AI-powered applications are performing inferences

in moments that application designers may not be constantly overseeing, there can be

additional challenges in how to ensure their appropriate operation when deployed.
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While early efforts developing AI-powered applications have aimed to automate the

completion of mundane and burdensome tasks, there is a growing awareness that the focus

should be on broadening and enabling engagement in personal pursuits in which people

find meaning. Examples of such AI-enabled human pursuits include composing music

and socially connecting with geographically distant friends and family. AI capabilities

can lower the barriers for users to engage in personal pursuits or participate in these

types of social activities by taking on tasks humans may struggle to do themselves. For

creative experiences, while the pursuit of music composition typically requires extensive

music theory knowledge, generative AI capabilities can aid novice composers in making

a harmonious song that expresses their creative goals. For social connection, it can be

challenging to find the time or reason to plan a call or initiate a direct message with people

who live at a distance (e.g., friends/family whom we no longer see regularly). However,

recent research [103] has shown the potential to opportunistically connect such people

through an intelligent context-aware agent. The agent identifies common situations across

geographic distance that coincidentally arise—thus capturing more meaningful moments

that without such an agent would have been missed. In other words, using AI capabilities

to foster meaningful pursuits—from helping novices explore their creativity, to recreating

across distance the feelings of connecting opportunistically with a friend—is an important

frontier for the HCI and applied AI research communities.

In these pursuits, people are not interested in enlisting AI to simply create something

sensible. Instead, they use AI to help them realize their specific creative ideas that without

AI assistance would have been difficult or impossible. For example, a novice composer who

lacks music theory expertise can partner with generative AI to help them co-create a song.
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They want to create a song that not only sounds pleasant and evokes a certain emotion

but also reflects their creative ideas for how the different musical elements should come

together. In another example, a social experience designer aims to recreate across distance

the feelings of connecting opportunistically with a friend by using a context-aware agent

to identify coincidental moments when users share similar situations. Instead of using

an AI agent to start interactions in moments when end-users share any similar context,

a designer may want to use the AI agent to realize a specific vision for an opportunistic

social experience at a distance—such as facilitating an experience based on geographically-

distant friends grabbing a warm meal on a cold day.

To ensure their ideas are realized, people need to communicate them. Effective com-

munication entails several steps. First, people need a modality to articulate their ideas in

ways that AI capabilities can understand and act upon. Second, people need to form their

ideas to effectively articulate them to AI systems. Ideas that remain vague will result in

AI systems that have a surface-level understanding. Those that are articulated incorrectly

will result in AI actions that do not align with their expectations. Thus, articulating ideas

comprehensively and accurately is paramount for using AI to realize a creative vision.

However, many AI interfaces do not readily support such communication needs. One

issue is that an AI interface can only provide a few constructs for controlling an AI

capability. For instance, an existing generative AI for music may not allow people to

request how they want AI to generate the rest of the song. Another issue is that an AI

interface’s constructs can be challenging for people to articulate their ideas with, even

if the constructs can influence how an AI capability operates. For example, the set of
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context detectors for monitoring someone’s context may not match a designer’s idea for

a situation they want to recognize for a shared experience.

Researchers in the AI community have made recent progress in improving the in-

terface between AI and humans by creating more communicative and collaborative AI

agents that can adapt their actions to the preferences, goals, and behaviors of users. One

recent approach that provides people with an intuitive modality for communicating in-

tentions to an AI capability is large language models. For example, generative AI models

like ChatGPT [110], DALL-E [114, 113], Stable Diffusion, Text-to-Music models like

MusicLM [3] can now understand a user’s instruction or prompt to generate text, im-

ages, and music accordingly. This has opened up many possibilities for personalized and

customized generated content. While LLM-based AI capabilities have made it easier to

articulate ideas to AI capabilities, they place the burden on users to form their ideas

to communicate. This can create issues if such AI systems jump to conclusions or take

action without comprehensively and precisely understanding a user’s intended meaning.

For example, a generative AI model could automatically produce creative artifacts based

on a user’s prompt (e.g., a painting that conveys the emotions ‘stuck, reflective, sad’)

without leaving room for the user to clarify or conceptualize how they want to evoke such

feelings in the artifact. In summary, even if an LLM-based interface exists for articulating

ideas to an AI capability, communication requirements like forming intentions must also

be addressed for people to realize the full extent of their ideas for AI-enabled creations.
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In parallel to the research happening in the AI community, the HCI community has

been interested in studying and supporting the interaction between humans and AI sys-

tems, and more broadly putting human experience and goals at the forefront of AI ap-

plication development. A body of HCI research has proposed human-centered methods,

guidelines, and strategies, some of which include identifying stakeholders’ requirements

before implementing an AI application, forming close collaborations with AI experts to as-

sess which interactions and features can be supported by current AI capabilities, sketching

out application interfaces populated with realistic AI outputs [135]. Of particular rel-

evance are generally applicable human-AI guidelines for designing interactions with AI

systems which can be used to evaluate and correct usability and interaction issues with

AI-powered features [6]. While we certainly agree with these guidelines for what inter-

actions would be helpful, challenges still remain in applying such guidelines to improve

the interactions with real AI systems, especially when the default interfaces to an AI

capability, such as an API, do not readily support such interactions.

In summary, interfaces of an AI system can lack intuitive or actionable constructs for

creators to communicate their ideas. Conventional interfaces can also place the burden

entirely on the user to form their intentions more comprehensively and precisely. And

while there are suggestions to improve interactions with AI, these guidelines can be dif-

ficult to implement if an AI’s interface does not support such interactions. Therefore,

building AI-powered applications without addressing these deficiencies in the communi-

cation interface with AI will result in AI-enabled artifacts and experiences that do not

reflect the intended idea. Suppose composers cannot convey their creative ideas through

a generative AI interface. In that case, this readily detracts from the joy a composer can
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receive from crafting an artifact and turning their ideas into reality. Similarly, suppose

designers cannot communicate their ideas about what situations would recreate the feel-

ing of sharing a similar experience with a friend. In this case, an AI agent will be limited

in how it can identify and facilitate opportunities for end-users to connect meaningfully.

1.1. Thesis and Contributions

This dissertation proposes a missing layer in an AI-powered application’s stack called

the Human-AI Interface Layer to improve the communication interface between people

and existing AI capabilities. The Human-AI Interface Layer reconfigures the user interface

to an AI capability with intuitive and actionable constructs for controlling an existing AI

and scaffolds for helping people to recognize and form their intentions. Rather than

relying on new AI capabilities to be trained to understand and operate on a new and

expanded set of constructs, a Human-AI Interface Layer approach can expose intuitive

and functional constructs for adjusting how existing AI capabilities operate to support

the more straightforward articulation of ideas. Moreover, instead of relying on AI systems

to take most of the initiative to infer a person’s intentions—which may cause AIs to jump

to conclusions and take action without a comprehensive or precise understanding of the

ideas and expectations—a Human-AI Interface Layer approach provides user interfaces

explicitly aimed at giving people more initiative to form, evaluate, and clarify the ideas

they will convey to AI.

In this thesis, I describe three example classes of problems faced while conveying an

idea and intent to an AI system. These challenges arise due to the interfaces of existing AI

systems not meeting people’s requirements for having intuitive and actionable constructs
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for communicating their specific ideas, and support for a back-and-forth process for form-

ing and clarifying intent with an AI system. For each example challenge, I introduce

my proposed Human-AI Interface Layer for resolving it. Each layer accomplishes this by

augmenting an existing AI system with new capabilities and reconfiguring its interface to

meet a user’s communication needs.

• First, when the interface to an AI capability only affords indirect influence over

coarse-grained objects, such as fully-completed creative artifacts, people can

struggle to evoke their fine-grained and opinionated ideas and progressively en-

gage in taking the initiative when partnering with AI to co-create an artifact. To

resolve this, I propose a Steering interface layer that partitions and constrains

generated outputs along semantically-meaningful dimensions and exposes user

interfaces for incrementally guiding AI outputs toward desired directions.

• Second, when a person’s ideas for their AI-enabled creation are conceptually-rich

and sometimes vague, people can struggle to translate these high-level concepts

to the lower-level constructs for AI systems to understand and act upon. As

such, I argue that an Expression Interface Layer can augment user interfaces

for using AI capabilities with cognitive support tools that help people flesh out

their high-level concepts and forage for relevant AI constructs which accurately

represent their concepts, leading to fuller and more precise encodings of their

conceptually-rich ideas.
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• Third, when an individual provides explicit instructions to an AI agent, the

agent’s actions and decisions during execution can still disappoint due to en-

countering constraints that cause breakdowns in the individual’s implicit expec-

tations. To resolve this, I developed an Execution Interface Layer for commu-

nicating about execution constraints to support the individual in recognizing

and stating implicit expectations so an AI agent can appropriately adjust after

handoff.

Together, these Human-AI Interface Layers act as an intermediary so end-users and

designers can articulate, form, reflect upon, and clarify their meaning and intention to the

AI system for more aligned output and action. We demonstrate the value of the Human-

AI Interface Layer in the context of two domains: (A) novice composers using a generative

AI model to co-create musical artifacts; and (B) designers using an intelligent, context-

aware agent to facilitate opportunistic social experiences between friends and family who

live across distant contexts.

1.1.1. An Interface Layer for Incrementally Steering Generative AI

The first class of problem I consider is in regard to a user’s goal to convey fine-grained

qualities into different pieces of a generated artifact, despite the interface to an AI only

allowing indirect influence over how the entire artifact is generated. I studied a concrete

instantiation of this problem in the domain of generative AI tools for music co-creation,

where a music creator wants to collaborate with generative AI to create a song that

reflects their ideas and emotions. Conventional generative AI tools offer a user interface

very similar to the AI’s interface: they take as input some starting notes, and then based
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on these notes, output a completed song or musical piece. However, it’s challenging and

sometimes unobtainable to use these generative AI tools to create music that evokes a

composer’s creative ideas: when a composer wants to craft small chunks of the composition

at a time, the AI generates the whole artifact all at once which makes it hard to edit and

control how different chunks sound; and while a user wants to define fine-grained musical

or emotional qualities in the song, they don’t have controls to convey how they want the

musical notes to be generated. In other words, if a generative AI interface only supports

tweaking completed generative outputs as a whole—but does not allow the person to

define how different parts, within the whole, should be generated according to different

qualities—human creators will not be able to craft an artifact that captures their creative

ideas nor derive inherent satisfaction from this creative pursuit.

To address this shortfall, a Steering Interface Layer reconfigures interactions with an

existing AI model by exposing a control panel user interface that partitions AI-generated

content into chunks and constrains what the AI generates based on several semantically-

meaningful dimensions. The Steering Interface Layer was designed to enable creators to

incrementally direct the creation process in real time. We demonstrate this through Co-

coco, a music composition application for using a deep generative AI model augmented by

a Steering Interface Layer that supports partitioning generated musical notes to particu-

lar voices and time steps; constraining outputs along semantically-meaningful directions

(happy/sad; similar/different; conventional/surprising); and auditioning multiple alter-

native generations. Technically, we contribute a soft priors technique for adjusting the

sampling distribution of an AI model in accordance with semantic constructs without

retraining the underlying model—thereby allowing tool designers to expose a range of
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musically-meaningful constructs. Evaluative studies of the Steering Interface Layer show

how partitioning outputs allows people to work on a chunk of the whole artifact at a time,

which makes thinking about creative intentions and discovering strategies for realizing

them more manageable. We find this gives people the control they need to communicate

their creative intentions for the AI to follow, which helps them to feel greater self-efficacy,

creative ownership, trust, and collaboration with the AI.

1.1.2. An Interface Layer for Expressing High-Level Concepts using Low-Level

Constructs

The second class of challenge occurs when the users’ ideas for what they are trying to

create are at many levels of abstraction removed from the constructs for configuring an AI

system. I consider a manifestation of this problem for context-aware AI systems, where AI

capabilities can infer lower-level features of context (e.g., locations), but not the activities

or experiences end-users could be engaging in. When training new AIs with better-fitting

constructs isn’t feasible, the burden is on individuals to bridge from their high-level idea to

the AI’s low-level constructs. Such is the case for conventional programming interfaces for

context-aware systems: while an individual can readily define simple situational triggers

using low-level objects (e.g., a “restaurant serving soup”; a “park”), they can struggle

to express high-level concepts of human situations and the socio-cultural ideas about the

activities or experiences they afford (e.g., “family can share warm comfort foods on a cold

day”; “a place to have a picnic”), which are several levels of abstraction removed.

To overcome challenges bridging the semantic gap between human ideas and the con-

structs provided by an AI system, the Expression Interface Layer provides a designer with
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cognitive bridging tools that address challenges that arise when forming one’s high-level

ideas and finding relevant and precisely-matching machine constructs for one’s concepts.

We built an Expression Interface Layer into Affinder, a visual programming environment

for expressing concepts of situations using location context detectors that intelligent,

context-aware agents can computationally act upon. To prevent concepts from being too

narrowly defined, Affinder has prompts for reflecting and expanding a designer’s concep-

tion of the situation, inspired by analogical design techniques for re-representing ideas

through more abstract schemas. To ensure they can find all relevant AI constructs for

a concept, Affinder provides an unlimited vocabulary search that uses textual metadata

associated with the context features (e.g., Yelp Reviews of the location categories) which

provides designers a rich vocabulary for querying for relevant constructs based on their

conception. To mitigate concept expression inaccuracies, Affinder includes simulation and

repair tools for recognizing misconceptions and ensuring the machine representation pre-

cisely operates as the designer intended. We find that the Expression Interface Layer’s

cognitive supports can help designers richly express a high-level situation by helping them

define a more expansive set of concepts for ways to realize it (e.g., eating spicy food and

soupy foods are distinct ways to foster the feeling of grabbing warm comfort foods on a

cold day). The cognitive supports also help to find relevant and accurate links between

their intermediate concepts of a situation and the features that a context-aware AI system

can understand and detect.
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1.1.3. An Interface Layer for Recognizing and Stating Implicit Expectations

for Execution

Even when an individual has expressed instructions for an automated system to carry

out, automated systems can take action and make decisions that are disappointing due

to uncommunicated user expectations. For example, an automated system can auto-

matically plan an itinerary for a user, but the itinerary it outputs has packed too many

activities in one day which a person may not have the energy to do [137]. I examine

this third class of problem in the domain of context-aware AI agents facilitating oppor-

tunistic social experiences: While an intelligent agent can proactively engage end-users

when their context meets the situational requirements (e.g., when located at beaches),

a contextually-triggered experience might be inaccessible to end-users in a target pop-

ulation if the situational requirement is hard to meet based on the region they live in

(e.g. people living in landlocked cities). Such disappointments during execution can be

attributed to the user interface for AI agents placing the burden on the individual to state

their implicit expectations, with little support for helping them recognize when they’ve

forgotten to state an idea that is important during execution. To make matters more

difficult, an AI agent may not provide a means for people to communicate their expec-

tations to the AI agent so it can respect them. For example, a context-aware agent may

only provide constructs for defining who can be involved in a multi-person opportunistic,

social experience, but few ways to encode expectations about the maximum time in which

participation should be left unreciprocated, let alone mechanisms for controlling how an

AI agent triggers to respect these expectations.
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To improve communication about implicit expectations, we developed an Execution

Interface Layer that augments the user interfaces for programming an AI agent to sup-

port people in either (1) recognizing how implicit expectations could be impacted by

how they’ve currently articulated their explicit ideas, or (2) stating those implicit ideas

through new AI mechanisms that can adapt an existing AI’s execution behavior to achieve

a balance of explicit and implicit expectations. We developed different tools and mech-

anisms that improve the communication of implicit ideas so context-aware coordination

engines can respect such interaction norms. We created a tool to help people adjust their

situational requirements for an experience to balance their explicit and implicit expec-

tations for access and inclusiveness across different regions. Moreover, we developed a

decision-theoretic mechanism to determine if launching an AI-powered experience will

lead to timely participation. It is based on a model of people’s likelihood to participate

and a designer’s ideas about the importance of timely participation. These examples

illustrate how an Execution Interface Layer can complement existing AI capabilities for

coordinating opportunistic experiences and ensure that people and AI systems are taking

into account the implicit ideas when making decisions.

1.2. Thesis Overview

This dissertation details our contributions to developing Human-AI Interface Layers

that address three example classes of problems when communicating intentions and ideas

for AI systems to enact. I demonstrate the benefits of these interface layers in the con-

text of two domains: (A) novices using generative AI to explore their human creativity;
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and (B) designers using context-aware AI agents to surface and realize the potential for

coincidental, meaningful connections across geographic distances.

(1) Chapter 2 will describe the design and development of a Steering Interface Layer,

which reconfigures a default interface for generative AI by partitioning generated

outputs and providing semantic knobs for controlling the AI model in the domain

of music. Through an evaluation study, we found that the Steering Interface

Layer significantly improved feelings of self-efficacy in achieving creative goals,

collaboration with AI, and agency when co-creating.

(2) Chapter 3 will show the need for an Expression Interface Layer that supports a

designer’s cognitive process in fleshing out high-level concepts for a context-aware

experience and linking those to machine detectors that an AI system can use

to recognize the situation across distributed contexts. This chapter introduces

Affinder, which is a visual programming tool that allows designers to encode

their ideas for situations for usage in a mobile, location-based context-aware

application. Affinder’s core features address cognitive challenges designers face

when expressing their high-level intentions for an experience—which are social

and cultural ideas that are many levels of abstraction removed from the context-

detectors made available by existing context APIs and frameworks.

(3) Chapter 4 will show that human elements for coordinating an opportunistic, so-

cial experience, such as social norms around participation, are typically implicit,

and need to be stated to ensure AI systems can promote desirable social in-

teractions under real-world conditions. This chapter describes how an interface

layer for recognizing and stating tacit expectations for execution can address
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breakdowns in social interdependence that occur when coordinating opportunis-

tic interactions that are governed by the uncertain availability of participants.

(4) Chapter 5 provides a discussion of the dissertation as a whole, summarizing key

contributions, design principles, and research methods for Human-AI Interface

Layers. In addition, we illustrate how the three example classes of challenges

can manifest in other domains and discuss how to generalize and extend the

approaches to apply to new domains and account for the emergence of new AI

capabilities like Large Language Models. This chapter ends by emphasizing the

role of Human-AI Interface Layers in preserving human’s engagement in these

human endeavors where craft, self-expression, and mastery is valued.

(5) Chapter 6 concludes the dissertation with a succinct restatement of the thesis,

the three types of Human-AI Interface Layers that were advanced, and the funda-

mental idea of enhancing people’s ability to communicate their goals for personal

endeavors despite limitations in existing AI capabilities and interfaces.

1.3. Prior Publications and Authorship

Although I am the primary author of the research detailed in this dissertation, it

is also the product of years of collaboration with my primary co-advisors, Haoqi Zhang

and Darren Gergle, and my collaborators at Google Research. The work on Steering

Interfaces for Generative Models for Music appeared at CHI 2020 [101] and was based

on my internship at Google Research with Andy Coenen, Anna Huang, Michael Terry,

and Carrie J. Cai. The work on the Expression Interface Layer instantiated through

Affinder [104] appeared at CHI 2022 and was a collaboration with Darren Gergle and
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Haoqi Zhang. The initial work behind the Execution Interface Layer chapter was done in

collaboration with Kapil Garg, Darren Gergle, and Haoqi Zhang, and at the time of thesis

writing is being prepared for resubmission. To reflect my collaborators’ contributions, I

use the first-person plural (“we”) in these chapters.
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CHAPTER 2

An Interface Layer for Incrementally Steering Generative AI

In this chapter, we investigate how people can struggle to impart their fine-grained

and opinionated ideas into an AI-created artifact when the AI’s user interface only allows

generating all the content at once, and adjusting how outputs are generated in a coarse-

grained and indirect manner. We study this issue in co-creating music with generative AI,

where people would like to take initiative and exercise fine-grained control when crafting

elements of a creative artifact—yet, the default interfaces to using generative AI models

automate many of the steps of the creation process that are important for people to feel

greater ownership and create an artifact that reflects their creative decisions.

Broadly, the chapter highlights that a Human-AI Interface Layer for steering during

co-creation can reconfigure the interaction with powerful AI that automatically generates

fully-completed end-products by partitioning and constraining its existing outputs. This

supports fine-grained and incremental control of creative intent, thereby preserving the

human involvement needed for crafting a personal artifact and engaging in an inherently

valuable creative experience.

2.1. Introduction

Rapid advances in deep learning have made it possible for artificial intelligence (AI)

to actively collaborate with humans to co-create new content [109, 31, 53, 91, 58, 83].
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One promising application of machine learning in this space has been the use of generative

deep neural network (DNN)-backed systems for creative activities such as poetry writing,

drawing, and music creation—experiences that bear intrinsic value for people, but often

require specialized skill sets. For example, by completing a drawing that a user has

started [109, 31, 87, 46] or filling in a missing section of a song [74, 59], generative

models could enable untrained lay users to take part in creative experiences that would

otherwise be difficult to achieve without additional training or specialization [76, 41, 54].

In this chapter, we focus on the needs of music novices co-creating music with a generative

DNN model.

While substantial work has focused on improving the algorithmic performance of gen-

erative music models, little work has examined what types of interactive capabilities users

actually need when co-creating with generative AI, and how those interactive capabilities

might affect the music co-creation experience. Recent generative music models have made

it conceivable for novices, who have little or no formal experience composing music, to

create an entire musical composition from scratch, in partnership with a generative model.

For example, the widely available Bach Doodle [76] sought to enable anyone on the web

to create a four-part chorale in the style of J.S. Bach by writing only a few notes, allowing

an AI to fill in the rest. While this app makes it conceivable for even novices with no

composition training to create music, it is not clear what people desire when engaging

in co-creation activities like these, or what forms of interaction with AI might they find

useful.

In a study we conducted to understand the human-AI co-creation process, we found

that AI music models can sometimes be quite challenging to co-create with. Paradoxically,
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the very capabilities that enable such sophisticated models to automatically generate

fully-completed music compositions from scratch can impede human partnership: Users

struggled to evaluate and edit the generated music because the system created too much

content at once; in essence, they experienced information overload. They also struggled

with the system’s non-deterministic output : While the output would typically be coherent,

it would not always align with the user’s musical goals at the moment. These findings raise

critical questions about how to co-create with an AI that already matches or supersedes a

novice’s capabilities to create artifacts: What user interfaces and interactive controls are

important, and what interactive capabilities should be exposed by deep generative neural

nets to benefit co-creation?

To address these interaction challenges, we developed a Human-AI Interface Layer that

augments the standard generative AI interface with AI-steering tools that partition out-

puts into meaningful chunks and constrain how the AI generates content along semantic

dimensions. These AI-steering tools were designed to enable novice users partnering with

a generative AI to iteratively direct the creation process in real-time. To ground this

research, we developed Cococo (collaborative co-creation), a music editor web-interface

for novice-AI co-creation that augments standard generative music interfaces with a set

of AI-steering tools: 1) Voice Lanes that allow users to define for which time-steps (e.g.

measure 1) and for which voices (e.g. soprano, alto, tenor, bass) the AI should generate

music, 2) an Example-based Slider for expressing that the AI-generated music should be

more or less like an existing example of music, 3) Semantic Sliders that users can adjust to

direct the music toward high-level directions (e.g. happier / sadder, or more conventional

/ more surprising), and 4) Multiple Alternatives for the user to select between a variety
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of AI-generated options. To implement the sliders, we developed a soft priors approach

that encodes desired qualities specified by a slider into a prior distribution; this soft prior

is then used to alter a model’s original sampling distribution, in turn influencing the AI’s

generated output without need to retrain the model

In a summative evaluation with 21 music novices, we found that AI-steering tools not

only increased users’ trust, control, comprehension, and sense of collaboration with the AI

but also contributed to a greater sense of self-efficacy and ownership of the composition

relative to the AI. Beyond improving user attitudes towards the AI, the steering tools also

enabled new user strategies for music co-creation: participants used the tools to divide

the music into semantically meaningful components; learn and discover musical structure;

debug the music and the AI; and explore the limits of the AI.

In sum, this chapter makes the following contributions:

• We discover key interfacing challenges that music novices face when co-creating

with a typical generative-DNN music interface that automatically generates a

fully-completed artifact, including issues related to AI-induced information over-

load and its non-deterministic output.

• We present the design and implementation of AI-steering tools that enable users

to progressively guide the co-creation process in real-time, contributing a soft

priors technical approach that encodes desired qualities in a prior probability

distribution to influence the AI’s content generation, without needing to retrain

the model.
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• We find in a summative study with 21 users that the steering tools increase users’

sense of ownership of the composition relative to the AI, while increasing trust,

controllability, and comprehensibility of the AI.

• We describe new user strategies for co-creating with AI using these tools, such as

developing new insights into composition strategies, isolating the cause of musical

glitches, and exploring the limits of the AI. We also uncover novice considerations

of agency and collaboration when co-creating with AI.

Taken together, these findings inform the design of future Human-AI Interface Layers

for co-creation.

2.2. Related Work

2.2.1. Human-AI Co-creation

The acceleration of AI capabilities has renewed interest in how AI can enable human-AI

co-creation in domains such as drawing [109, 31, 87, 46], creative writing [53, 25], design

ideation [91], video game content generation [58], and dance [83]. For example, an AI

might flesh out a half-sketched drawing [109], write the next paragraph of a story [25], or

add an image to a design mood board [91]. Across this range of prior work, a core challenge

has been developing collaborative AI agents that can adapt their actions based on the goals

and behaviors of the user. To this end, some systems design the AI to generate output

conditioned upon the surrounding context of human-generated content [46, 25, 53], while

others leverage user feedback to better align AI behavior to user intents [58, 91, 31].

Research has also observed that users desire to take initiative in their partnership with

AI [109], with controllability and comprehensibility being key challenges to realizing this



42

vision [6]. Building on this need, our work enables users to express their preferences to

an AI collaborator through a variety of means.

Much of the prior work in this space has focused on the domains of drawing or writ-

ing. Efforts examining human-AI collaboration for creating music have been relatively

nascent [57], particularly with generative DNN music agents of similar prowess. Building

on prior work examining AI as a peer in the creative process, our work contributes to the

broader literature by investigating human-AI co-creation in music.

2.2.2. Interactive Interfaces for ML Music Models

To support music makers in the composition process, researchers have conceptualized and

developed ML-powered interfaces that map user inputs to musical structures so users

can interactively explore musical variations. Examples of such designs and systems in-

clude those that allow users to find chords to accompany a melody [126, 56], experiment

with adventurous chord progressions [75, 51], control the similarity vs. otherness for re-

trieval of music samples [7], use custom gestural inputs to interpolate between synthesizer

sounds [48], or turn free-hand sketches into harmonious musical textures [47].

More recently, progress in generative DNNs has introduced fully-generative music

interfaces capable of performing auto-completion given a seed of user-specified notes [59,

76, 118]. Beyond supporting single sub-components, these systems can produce full

scores that automatically mesh well with local and distant regions of music. Thus, there

is potential to now support users in a wide range of musical tasks (e.g., harmonizing

melodies, elaborating existing music, composing from scratch), all within one interface.

While recent research has made these fully-generative interfaces increasingly available to
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musicians and novices alike [59, 118, 76, 40], there has been relatively little HCI work

examining how to design interactions with these contemporary models to ensure they are

effective for co-creation, especially for novices. Our research contributes an integrative

understanding of how interfaces to these capable AIs can be designed and used, how these

capabilities affect the composing experience, and users’ attitudes towards AI co-creation.

2.2.3. Deep Generative Music Models

As their name implies, generative deep neural networks can synthesize content. Research

has demonstrated the potential for modeling and synthesizing music, ranging from single-

voice sequences [45] and multi-part music [54, 96], to music with variable parts at each

time step [16] and music with long-term structure over minutes [78, 111, 63].

In contrast to models that (typically) generate music chronologically from left to right,

in-filling models can more flexibly support co-creation by allowing users to specify regions

at any point in the music, then auto-filling those gaps. Examples include DeepBach [59]

and Coconet [74], both trained on four-part Bach Chorales. Researchers have also cre-

ated models designed to support interaction mechanisms that grant users more control.

For example, there are emerging approaches aimed at learning a continuous latent space

so that users can interpolate between music [117], or explore a space of musical alter-

natives [39]. In our work, we adopt soft priors as a general approach that provides

additional ways for users to direct their exploration. In contrast to hard constraints, our

approach allows DNNs to simultaneously consider the original context (encoded in the

model’s original sampling distribution) and additional desired qualities (encoded in a soft

prior distribution), without needing to retrain the model.
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2.3. Formative Needfinding Study

Our research focuses on enabling novices to engage more creatively with music, without

the prerequisite understanding of musical theory and composition. Thus, we conducted

a 45 minute formative interview and elicitation study with 11 novice music composers to

understand 1) their motivations and needs for creating music themselves and 2) challenges

in co-creating with AI composing tools. We recruited participants from our institution

using mailing lists and word-of-mouth, screening for individuals who had played a musical

instrument at some point in their life: 9 participants had five or more years of experi-

ence playing a musical instrument; 8 had no formal experience in composition and had

informally experimented with musical arrangements using music software or improvising

on an instrument; and 2 had tried creating a small composition as part of a music theory

class assignment.

2.3.1. Motivations and Needs for Creating Music

Our participants reported the desire to create music to complement or enrich existing

personal artifacts or experiences, such as creating an accompaniment to a short personal

video or photo album, a composition inspired by a poem, or a theme song for a friend

or loved one. Participants who had attempted creating music on their own encountered

challenges due to their lack of training in music theory and composition. Oftentimes, they

knew something needed to be created or fixed (e.g., adding harmonies), but lacked the

expertise to identify the issue, a strategy for solving the problem, and/or the ability to

generate viable solutions. These challenges suggest specific ways AIs could aid users and

make them more capable.
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2.3.2. Challenges in Co-Creating with Generative DNNs

In the second half of the study, we conducted an elicitation to understand challenges when

interacting with a deep generative model to compose music. The interface mirrored the

generative infilling capabilities found in conventional interfaces for deep generative models

[76], where users can manually draw notes and request the AI to fill in the remaining voices

and measures, or erase any part of the music and request the AI to fill in the gap. Overall,

we found that users struggled to evaluate the generated music and express desired musical

elements, due to information overload and non-deterministic output.

2.3.2.1. Information Overload. While the deep generative models were capable of

infilling much of the song based on only a few notes from the user, participants found the

amount of generated content overwhelming to unpack, evaluate, and edit. Specifically,

they had difficulty determining why a composition was off, and expressed frustration at

the inability to work on smaller, semantically meaningful parts of the composition. For

example, one user struggled to identify which note was causing a discordant sound after

multiple generated voices were added to their original: “It was difficult because all the

notes were put on the screen already... I can identify places where it doesn’t sound very

good, but it’s actually hard to identify the specific note that is off.” Some participants

naturally wanted to work on the composition “bar-by-bar or part-by-part”; in contrast

to expectations, the generated output felt like it “skipped a couple steps” and made it

difficult to follow all at once: “Instead of giving me four parts of harmony, can it just

harmonize one? I can’t manage all four at once.”

2.3.2.2. Non-deterministic output. Even though the AI was capable of generating

notes that were technically coherent to the context of surrounding notes provided by
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users, the stochastic nature of the system meant that its output did not always match the

user’s current musical objectives. For example, a participant who had manually created

a dark, suspenseful motif was dismayed with how the generated notes were misaligned

with the original feeling of the motif: “the piece lost the essence of what I was going for.

While it sounds like nice music to play at an upscale restaurant, the sense of climax is

not there anymore.” Even though what was produced sounded harmonious to the user,

they felt incapable of giving feedback about their goal in order to constrain the kinds of

notes the model generated. Despite being technically aligned to context, the music was

musically mis-aligned with user goals. As a result, participants wished there were ways

to go beyond randomly “rolling dice” to generate a desired sound, and instead control

the generation based on relevant musical objectives.

2.4. Cococo

Based on identified user needs, we developed Cococo (collaborative co-creation), a

music editor web-interface for novice-AI co-creation that augments standard generative

music interfaces with a set of AI steering tools (Figure 2.1). Cococo builds on top of

Coconet [74], a deep generative model trained on 4 part harmony that accepts incomplete

music as input and outputs complete music. Coconet works with music that can have 4

parts or voices playing at the same time (represented by Soprano Alto Tenor Bass), are

2-measures long or 32 timesteps of sixteenth-note beats, and where each voice can take

on any one of 46 pitches. Coconet is able to infill any section of music, including gaps

in the middle or start of the piece. To mirror the most recent interfaces backed by these

infill capabilities [40, 59], Cococo provides a rectangular infill mask feature, with which
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Figure 2.1. Key components of Cococo: users can manually write some
notes (A), specify which voices and in which time range to request AI-
generated music using Voice Lanes (B), click Generate (C) to ask the AI
to fill in music given the existing notes on the page, use Semantic Sliders
(D) to steer or adjust the AI’s output along semantic dimensions of interest
(e.g. more surprising, more minor or sad), use the Example-Based Slider
(E) to express how similar/different the AI-generated notes should be to
an example selection, or audition Multiple Alternatives (F) generated by
the AI: users select a sample thumbnail to temporarily substitute it into
the music score (shown as glowing notes in this figure (G)), then choose
to keep it or go back to their original. Users can also use the Infill Mask’s
rectangular selection tool (H) to crop a section of notes to be infilled again
using AI.

users can crop a passage of notes to be erased, and automatically infill that section using

AI (see Figure 2.1H). Users can also manually draw and edit notes.

Beyond the infill mask, Cococo distinguishes itself with its AI steering tools. Specif-

ically, users start an AI-generated iteration by using Voice Lanes to define for which

time-steps (e.g. measure 1) and for which voices (e.g. soprano, alto, tenor, bass) notes

can be generated. Desired musical qualities of the generated notes can be adjusted by
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using an Example-based Slider and Semantic Sliders. Finally, users have Multiple Alter-

natives to audition and choose from. Cococo supports an iterative co-creation process

because users can repeat this workflow by inputting subsequent, incomplete versions of

the composition to inform the AI’s next generation. A visual description of this workflow

is included in Figure 2.1.

2.4.1. Voice Lanes

Voice Lanes allows a user to specify the voice(s) for which to generate music within a given

temporal range. With this capability, users can control the amount of generated content

they would like to work with. This was designed to address information overload caused

by Coconet’s default capabilities to infill all remaining voices and sections. For example,

a user can request the AI to add a single accompanying bass line to their melody by

highlighting the bass (bottom) voice lane for the duration of the melody, prior to clicking

the generate button (see Figure 2.1B). To support this type of request, we pass a custom

generation mask to the Coconet model including only the user-selected voices and time-

slices to be generated.

2.4.2. Semantic Sliders

Cococo includes two semantic sliders to influence what the generative DNN creates: a

conventional vs. surprising slider, and a major (happy) vs. minor (sad) slider. This was

based on formative observations that users wanted to control both musical qualities (e.g.,

how much the generated notes should stand out from what already exists) and emotional

qualities (e.g., should the notes together produce happy or sad tones).
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Users can make the generated notes more predictable given the current context by

specifying more “conventional” on the slider, or more unusual by specifying more “sur-

prising.” The conventional/surprising slider adjusts the parameter more formally known

as the temperature (T ) of the sampling distribution [55]. A lower temperature makes

the distribution more “peaky” and even more likely for notes to be sampled that had

higher probabilities in the original distribution (conventional), while higher temperatures

make the distribution less “peaky” and sampling more random (surprising). In formative

testing, we found that a log scale interval of [1/8, 2] with a midpoint of 1/2 yielded a

reasonable range of results. In addition, we refined the semantic labels of conventional/-

surprising based on user feedback to best capture its behavior.

The major vs. minor slider allows users to direct the AI to generate note combinations

with a happier (major) quality or a sadder (minor) quality. The limits of this slider include

happy and sad face emojis to signal the emotional tones users can expect to control. To

generate a passage that follows a more major or minor tone, we define a soft prior that

encourages the sampling distribution to generate the most-likely major triad (for happy)

or minor triad (for sad) at each time-step.

2.4.3. Audition Multiple Alternatives

Cococo provides affordances for auditioning multiple alternatives generated by the AI.

This capability was designed based on formative feedback, in which users wanted a way

to cycle through several generated suggestions to decide which was the most desirable.

We allow the user to select the number of alternatives to be generated and displayed

(with a default of three). A thumbnail preview of each alternative is displayed and
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can be selected for audition within the editor, allowing the user to hear it within the

larger musical context. The musical chunk used as a prior to generation is accessible via

the top thumbnail preview (labeled “original”) so that users can always compare what

the previous version of the piece sounded like, and opt to not use any of the generated

alternatives.

2.4.4. Example-based Slider

While prototyping the Multiple Alternatives feature, we found that the non-determinism

inherent in a deep generative model like Coconet can lead to two undesirable outcomes:

generated samples can be too random and unfocused, or they can be too similar to each

other and lack diversity. For example, when the generation area was small relative to the

surrounding context, generated results would become repetitive: There were a limited set

of likely notes for this context according to the model. As a solution, we developed the

example-based slider for expressing that the AI-generated music should be more or less

like an existing example of music. Before this slider is enabled, the user must select a

reference example chunk of notes, either by using the most recent set of notes generated

by AI, or manually selecting a reference pattern using the voice lanes or infill mask.

Example-based sliders also use soft priors to guide music generation.

2.4.5. Soft Priors: a Technique for AI-Steering

Many of our AI-steering tools make use of a “soft prior” to modulate the model’s generated

output. These priors enable users or an AI-steering tool designer to add control to existing

generative models without needing to retrain them. The model’s sampling distribution
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Figure 2.2. Use of soft priors to adjust a model’s sampling distribution.
Darker cells represent higher probabilities. The shape of the distribution
is simplified to 1 voice, 7 pitches (rows), and 4 timesteps (columns). In
Cococo, the actual shape is 4 voices, 46 pitches, and 32 timesteps.

is a softmax [55] probability distribution over all possible pitches, for each voice and for

each time step; high probabilities are assigned to the pitches that are likely given the

infill’s surrounding musical context. The soft prior approach enables the generation of

output that adheres to both the surrounding context (encoded in the model’s sampling

distribution) and additional desired qualities (encoded in a prior distribution). More

formally, we use the equation below to alter the distribution used to generate outputs:

padjusted(xv, t|xC) ∝ pcoconet(xv, t|xC) psoftprior(xv, t)

where pcoconet(xv,t|xC) gives the sampling distribution over pitches for voice v at time

t from Coconet given musical context xC (C gives the set of v, t positions constituting

the context), psoftprior(xv,t) encodes the distribution over pitches specified by the user or

AI-steering tool designer (serving as soft priors), and padjusted(xv,t|xC) gives the resulting

adjusted posterior sampling distribution over pitches.

The soft priors psoftprior(xv,t) are defined so encouraged notes are given a higher proba-

bility, and those discouraged are given a lower, but non-zero probability. This setup allows
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for two desirable properties. First, since none of the note probabilities are forced to zero,

very probable notes in the model’s original sampling distribution can still be likely after

incorporating the priors. Second, even though the priors are specified for particular voice

and time steps, their effects can propagate to other parts of the piece. For example, as

Coconet fills in the music, it will try to generate transitions that go smoothly between

parts with a soft prior and parts without. Together, these make it possible for the model’s

output to adhere to both the original context and the additional user-desired qualities.

The soft priors technique powers Cococo’s example-based slider and semantic sliders.

When the user sets the example-based slider to more “similar,” we create a soft prior that

has higher probabilities for notes in the example. Conversely, for a slider setting of more

“different,” we create a soft prior that has lower probabilities for notes in the example.

The soft prior is then used to alter the sampling distribution according to the equation

and Figure 2.2.

The minor/major slider uses a slightly more complicated approach to define the soft

prior distribution. To encourage notes from a major (or minor) triad, we construct the

soft prior by asking what is the most likely major (or minor) triad at each time slice

within the model’s sampling distribution. The log-likelihood of a triad is computed by

summing the log-probability of all the notes that could be part of the triad (e.g., for a C

major triad, this includes all the Cs, Es, and Gs in all octaves). We repeat this procedure

for all possible major (or minor) triads to determine which triad is the most likely for a

time slice. We then repeat this procedure for all time slices to be generated, in order to

create our soft prior for most likely major (or minor) triads; this soft prior is used to alter
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the sampling distribution to create the adjusted posterior sampling distribution as shown

in Figure 2.2.

Cococo is implemented as a React.js web application1, backed by an open source

browser-based implementation [118] of the Coconet model. We modified Coconet to

include soft priors.

2.5. User Study

We conducted a user study to evaluate the extent to which AI-steering tools support

user needs, and to uncover how they affect the user experience of co-creating with AI.

To this end, we compared the experiences of music novices using Cococo to that of a

conventional interface that mirrors current interfaces for deep generative models (e.g.

the Bach Doodle [76]). The conventional interface is aesthetically similar to Cococo, but

does not contain the AI-steering tools. The conventional interface does include interactive

control features via the infill-mask feature (present in both conditions) which enables users

to crop any region of music to be regenerated [40, 59]. We ask in this study: RQ1: How

do the AI-steering tools affect user perceptions of the creative process and the creative

artifacts made with the AI (e.g., perceptions of ownership, self-efficacy, trust in the AI,

quality of the composition, etc.) and RQ2: How do music novices apply the AI-steering

tools in their creative process? What patterns of use and strategies arise?

1https://github.com/pair-code/cococo

https://github.com/pair-code/cococo
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2.5.1. Measures

To answer the research questions above, we evaluated the following outcome metrics. All

items below were rated on a 7-point Likert scale (1=Strongly disagree, 7=Strongly agree,

except where noted below).

Users’ compositional experience is important to support for novice music creators

pursuing autotelic, or intrinsically-rewarding, creative activities [26], which motivated the

following set of metrics. Creative expression: Users rated “I was able to express my

creative goals in the composition made using [System X].” Self-efficacy: Users answered

two items from the Generalized Self-Efficacy scale [122] that were rephrased for music

composition. Effort: Users answered the effort question of the NASA-TLX [62], where

1=very low and 7=very high. Engaging: Users rated “Using [System X] felt engaging.”

Learning: Users rated “After using [System X], I learned more about music composition

than I knew previously.” Completeness: Users rated “The composition I created using

[System X] feels complete (e.g., there’s nothing to be further worked on).” Uniqueness:

Users rated “The composition I created using System X feels unique.”

Motivated by the importance of supporting effective, human-centered partnerships

with AI [6, 26, 109], we additionally evaluated users’ attitudes towards the AI. AI in-

teraction issues: Users rated the extent to which the system felt comprehensible and con-

trollable, two key challenges of human-AI interaction raised in prior work on DNNs [109].

Trust: Participants rated the system along Mayer’s dimensions of trust [106]: capability,

benevolence, and integrity. Ownership: Users rated two questions, one on ownership

(“I felt the composition created was mine.”), and one on attribution (“The music created

using [System X] was 1=totally due to the system’s contributions, 7=totally due to my
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contributions.”). Collaboration: Users rated “I felt like I was collaborating with the

system.”

2.5.2. Method

The 21 participants who completed the study included 12 females and 9 males, ages 20 to

52 (µ = 31). To ensure that they were novices in composition, we required that they had

played a musical instrument before at some point in their life, but had none or relatively

little experience with composition and music theory. Almost all had either very little

experience with music theory (12 users) or a beginner-level understanding of note reading,

major/minor keys, intervals, triads, and time signatures (8 users). They had diverse prior

experiences with music composition, where 6 had never considered composing, 8 had

considered composing but never done it, and 7 had tried improvising or creating music

informally. Users were recruited through mailing lists at our institution and came from a

variety of professional backgrounds (e.g., designer, administrator, engineer). Each received

a $40 gift credit for their time.

Each user first completed an online tutorial of the two interfaces on their own (30

minutes). Then, they composed two pieces, one with Cococo and one with the conven-

tional interface, with the order of the conditions counterbalanced (15 minutes each). As

a prompt, users were provided a set of images from the card game Dixit [132] and were

asked to compose music that reflected the character and mood of one image of their

choosing. This task is similar to image-based tasks used in prior music studies [75]. Users

were observed while composing using a think-aloud procedure. Finally, they answered a

post-study questionnaire and completed a semi-structured interview (20 minutes).
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Figure 2.3. Results from post-study survey comparing the conventional in-
terface and Cococo, with standard error bars.

To analyze the quantitative measures, we conducted paired t-tests using Benjamani-

Hochberg correction [13] to account for the 15 planned comparisons (using a false dis-

covery rate Q = 0.05). For qualitative findings, three authors conducted a thematic

analysis [19] of the observation and interview data.

2.6. Quantitative Findings

Results from the post-study questionnaire are shown in Figure 2.3. In regards to users’

perceptions of the creative process, we found Cococo significantly improved participants’

ability to express their creative goals (µ = 5.5, µ = 3.8, p = 0.0006), self-efficacy

(average of two items α = 0.86, µ = 5.9, µ = 3.7, p < 0.0001), perception of learning

more about music (µ = 4.9, µ = 3.8, p = 0.0003), and engagement (µ = 6.0, µ = 4.4,

p = 0.0001) compared to the conventional interface. No significant difference was found

in effort (µ = 4.1, µ = 4.8, p = 0.1514); participants described the two systems as

requiring different kinds of effort: While Cococo required users to think and interact

with the controls, the conventional interface’s lack of controls made it effortful to express

creative goals. Users’ perceptions of the completeness of their composition made with

Cococo was significantly higher than the conventional interface (µ = 5.0, µ = 3.7, p =
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0.0116); however, no significant difference was found for uniqueness (µ = 5.1, µ = 5.0,

p = 0.6507).

The comparisons for users’ attitudes towards the AI were all found to be statistically

significant: Cococo was more controllable (µ = 5.9, µ = 3.5, p < 0.0001), comprehen-

sible (µ = 5.3, µ = 3.2, p < 0.0001), and collaborative than the conventional interface

(µ = 5.9, µ = 4.0, p = 0.0002); participants using Cococo expressed higher trust in the

AI, along the capability dimension (µ = 6.1, µ = 4.8, p = 0.0008), benevolence dimension

(µ = 5.3, µ = 3.8, p = 0.0004), and integrity dimension (µ = 5.2, µ = 3.6, p = 0.0055).

Users felt more ownership over the composition (µ = 5.2, µ = 3.8 p = 0.0071), and

attributed the music to more of their own contributions relative to the AI (µ = 4.6,

µ = 3.4, p = 0.0136).

2.7. Qualitative Findings

In this section, we describe participants’ strategies for co-creating music, how they

leveraged the AI-steering tools to work around perceived limitations of the AI, and how

the steering tools helped novices “up-level” their existing skills and knowledge, while still

retaining a sense of agency and ownership.

2.7.1. Tool-Based Strategies for Composing with AI

Users composed by breaking the task down into smaller, semantically-meaningful pieces,

and used the steering tools to support initial brainstorming, to generate alternatives, and

to steer the generation until it matched the user’s creative intent.
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Figure 2.4. Common Patterns of using Voice Lanes, visualized using inter-
action data from 4 archetypal participants (darker-colored segments were
performed by users before lighter-colored segments): (A) Voice-by-voice
(most common), (B) Temporal Chunks, (C) Combination of Voice-by-Voice
and Temporal Chunks, and (D) Ad-hoc Bits

2.7.1.1. Building Up, Bit-by-Bit. Many participants used the Voice Lanes to develop

one voice at a time, in a “brick-building” fashion (Figure 2.4A): “I’m trying to get the bass

right, then the tenor right, then soprano and alto right, and build bit-by-bit” (P2). This

use of the Voice Lanes helped reduce the mental workload of handling multiple voices at

once: “As someone who cannot be thinking about all 4 voices at the same time, it’s so

helpful to generate one at a time” (P2). Other participants leveraged the temporal aspect

of the lanes (Figure 2.4B), using the AI to generate all four voices for a measure then

refining the result. Some tried a combination of the voice-wise and temporal approaches,

by working voice-wise in the first half of the song, then letting the AI continue a full

measure in the second half (Figure 2.4C).
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One participant referred to this piece-wise process as creating intermediate “check-

points,” where they stopped and evaluated the song before more content was generated.

This strategy allowed participants to “intervene after [the AI] generated [content]... stop

it in the middle... and change it to feel different, before it kept going” (P14).

In contrast, in the conventional interface, the AI fully auto-completed the music at

once. As a result, participants resorted to “sculpting” and refining the AI’s fully-generated

music by repeatedly using the Infill Mask. Echoing the results in our need-finding study,

some participants found the amount of resultant content overwhelming.

2.7.1.2. Working With Semantically Meaningful Chunks. Similar to composing

bit-by-bit, users actively leveraged AI-steering tools to divide the music into semantically

meaningful chunks, based on voice or time. For example, many used Voice Lanes to dif-

ferentiate between the melody and background by using separate voices, or they assigned

different musical personas to different voices. For example, one participant gave the tenor

voice an “alternating [pitch] pattern” to express indecision in the main melody, then gave

other voices “mysterious... dinging sounds” as a harmonic backdrop (P4).

Participants also divided the music into temporally distinct chunks as a way of illus-

trating evolution or change. One participant communicated a fight was about to start by

requesting more conventional chords in the beginning third of the piece, then used the

minor and surprising slider to generate an unresolved feeling in this evolving battle scene

in the middle of the piece. In the final section, they used “prolonged notes [to match] the

long stare” between dueling characters.
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2.7.1.3. Generating, Auditioning, and Editing. Participants often employed the

AI-steering tools to 1) point the AI in a desired initial direction, 2) audition the gen-

erated content, or 3) edit and steer the generated output. The Multiple Alternatives

functionality naturally lent itself to this “generate and audition” strategy of music com-

position. Participants could generate a range of possibilities, audition them, and choose

the one closest to their goal before continuing.

When generating content, the Semantic Sliders were sometimes used to set an initial

trajectory for generated music: “There’s one... idea in my head.... that’s the signal that

I’m giving to the computer” (P3). Some felt that this capability helped constrain the large

space of possibilities that could be generated: “Because I was able to give more inputs

to [Cococo] about what my goals were, it was able to create some things that gave me a

starting point” (P8). In analysis of logs, 12 of the 21 participants modified the default

values of the slider parameters prior to their first AI generation request.

AI-steering tools were also used to refine AI generated content, nudging in a direction

closer to their intentions: “It was... not dramatic enough. Moving the slider to more

surprising, and more minor added more drama at the end” (P5). Applying the example-

based slider, users moved the setting to “similar” to push content closer to an example

that embodied their musical goals: “Work your magic on these notes, but keep it similar

so they won’t move around too much” (P1). They set the slider to “different” when

the initial AI-generated notes were “not sounding good” (P15) or when all the generated

options needed to be “totally scrapped” (P13) because all were of opposite quality to the

sound the user desired.
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2.7.2. Tool-based Strategies for Addressing AI Limitations

In this section, we describe ways in which the steering tools were used to discover and

directly address AI limitations.

2.7.2.1. Identifying and Debugging Problematic AI Output. By building up the

music bit-by-bit, users became familiar with their own composition during the creation

process, which enabled them to more quickly identify the “cause” of problematic areas

later on. For example, one participant indicated that “[because] I had built [each voice]

independently and listened to them individually,” this helped them “understand what is

coming from where” (P7). Conversely, if multiple voices were generated simultaneously,

participants found it difficult to understand the complex interactions: “It’s harder to

disentangle what change caused what... when I make a change, there could be this mixed

reaction...it propagates to [multiple] things at once” (P6). By enabling users to generate

bit-by-bit, and incrementally evaluate the music along the way, the steering tools may

have enabled novices to better understand and subsequently “debug” their own musical

creations.

2.7.2.2. Testing and Discovering the Limits of the AI. The steering tools also

enabled participants to discover the limits of the AI. One participant, while using Voice

Lanes to generate multiple alternatives for a single-voice harmony, discovered that the

AI may be constrained by what’s musically possible: “Maybe the dissonance is happening

because of how I had the soprano and bass... which are limiting it... so it’s hard to find

something that works” (P15). Here, the Voice Lanes helped this user consider the limits

imposed by a specific voice component, enabling them to reflect on the limits of the AI in a

more semantically meaningful way. The Multiple Alternatives capability further enabled
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this participant to systematically infer that this particular setting was unlikely to produce

better results through the observation of multiple poor results.

Some participants also set the sliders to their outer limits to test the boundaries of AI

output. For example, one user moved a slider to the “similar” extreme, then incrementally

backed it off to understand what to expect at various levels of the slider: “On the far

end of similar, I got four identical generations, and now I’m almost at the middle now,

and it’s making such subtle adjustments” (P18). These interactive adjustments allowed

the user to quickly explore the limits of what they can expect the AI tools to generate,

aiding construction of a mental model of the AI’s capabilities. In contrast, when using

the conventional interface, users could not as easily discern whether undesirable outputs

were due to AI limits, or a simple luck of the draw.

2.7.2.3. Proxy Controls. Participants drew upon a common set of composition strate-

gies to achieve desired outcomes. For example, higher pitches were used to communicate

a light mood, long notes to convey calmness or drawn-out emotions, and a shape of

ascending pitches to communicate triumph and escalation.

Users who could not find an explicit way to express these concepts to the AI re-

purposed the steering tools as “proxy controls” to enact these strategies. For example,

some users hoped that the surprising vs. conventional slider would be correlated with

note density and tempo. A common pattern was to set the slider to “conventional” to

generate music that was “not super fast... not a strong musical intensity” (P9), and to

“surprising” for generating “shorter notes... to add more interest” (P15). Participants

also turned to heuristics (such as knowledge that bass lines in music tend to contain

lower pitches) to “reverse-engineer” which Voice Lanes to select in an attempt to control



63

pitch range. Multiple tools were also combined to achieve a desired effect, such as using

“conventional” in conjunction with the bass Voice Lane to create slow and steady music.

In some cases, even use of the AI-steering tools did not succeed in generating the

desired quality. For example, the music produced using the “similar” setting was not

always similar along the user-envisioned dimension, and the surprising slider did not

systematically map to note density, despite being correlated. Facing these challenges,

participants developed a strategy of “leading by example” by populating surrounding

context with the type of content they desired from the AI. For instance, one participant

manually drew an ascending pattern in the first half of the alto voice, in the hopes that

the AI would continue the ascending pattern in the second half.

2.7.3. Novice Up-Leveling, Agency, and Collaboration

Beyond assisting with content generation and editing, the AI-steering tools seemed to

help participants extend their music composition knowledge and skills.

2.7.3.1. Learning and Discovering Musical Structure. In the Cococo interface,

there is no way to request initial music generation by the AI without first selecting Voice

Lanes. As a result, the steering tools implicitly created a more structured workflow, which

seemed to be helpful in providing scaffolding for novices: “With all the controls, I feel

more secure..... you have the bars of the [Voice Lanes]... you feel surrounded by this

support of the machine” (P13).

Users better understood how individual musical elements interacted together by re-

purposing the steering tools to study isolated effects. For example, one participant de-

scribed how a workflow of 1) manually composing a seed voice, 2) using the AI to generate
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a single accompanying voice from that seed, and 3) modifying the seed and repeating this

process helped them “more directly see how the changes [they] made affect things” (P6).

Another participant was “curious what [Cococo] will put in for alto...[After the alto is gen-

erated] it seems to go with the soprano, but there’s some dissonance near the beginning”

(P15). By isolating and revealing the effects of a single voice on another, the steering

tools allowed participants to “micro-evaluate” the music and discover patterns in how

components interact.

The steering tools also helped participants learn how sub-components affect semantic

qualities. One user described how they came to understand “that having that soprano up

[at this bar]... gives a total injection of a different emotion,” which they only realized by

using the Voice Lanes to place a single voice within a single bar. Another user learned

that “a piece can become more vivid by adding both a minor and major chord” after they

applied the major/minor slider to generate two contrasting, side-by-side chunks (P12).

Thus, while the conventional AI could do everything on its own, partitioning the AI’s

capabilities into smaller, semantically meaningful tools helped people learn composition

strategies that they could re-use in the future.

2.7.3.2. Novice Self-Efficacy vis-a-vis the AI. Novices described how the steering

tools instilled a sense of competence, self-efficacy, and agency when composing. For

example, a participant contrasted the conventional interface, in which the “machine is

doing all the work,” to Cococo, where they felt “more useful as a composer” (P3). The

AI-steering tools also seemed to instill a sense of creative agency. By enabling participants

to indicate what type of music was generated, the slider controls “really help to express

[myself ] in a way [I] wouldn’t be able to do in music notes or words” (P7). Participants
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also attributed their sense of agency and ownership to the availability of choice, even if

it wasn’t exercised: “There are options, but I don’t feel like I have to use them... it’s

not like the [AI] is telling me ‘This is the correct thing to do here‘... so I felt I definitely

had ownership in the music” (P9). In contrast, participants indicated that they felt less

ownership of the music in the conventional interface because they performed a smaller

portion of the work, relative to the AI: “The more I used the AI... the less I personally

compose, the less ownership I felt....I was not as creative, I felt like I got lazier with the

music...I relied on the AI to solve problems” (P9).

While there were indications that the steering tools helped improve feelings of self-

efficacy, there were also times when participants questioned their own musical capabilities

when they were unable to obtain desirable results. Because the AI generates music given

a surrounding “seed” context, users who were dissatisfied with AI output often wondered

whether they had provided a low-quality seed, leading to suboptimal AI output: “All the

things it’s generating sound sad, so it’s probably me because of what I generated” (P11).

In such cases, participants seemed unable to disambiguate between AI failures and their

own compositional flaws, and placed the blame on themselves.

In other instances, novices were hesitant to interfere with the AI music generation

process. For instance, some assumed that the AI’s global optimization would create better

output than their own local control of sub-units: “Instead of doing [the voice lanes] one

by one, I thought that the AI would know how to combine all these three [voices] in a way

that would sound good” (P1). While editing content, others were worried that making

local changes could interfere with the AI’s global optimization and possibly “mess the
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whole thing up” (P3). In these cases, an incomplete mental model of how the system

functions seemed to discourage experimentation and their sense of self-efficacy.

2.7.3.3. Novice Perceptions of AI’s Collaborative Role. The ability to use AI-

steering tools also affected how users perceived the AI as a collaborator. When using

Cococo, users conceived of the AI as a collaborator that could not only inspire, but also

revise and adjust to requests. For instance, one described it as a nimble team who “could

be adjusted to do what I would like for them to do... I had a creative team [if I needed one]

or I had a conventional team [if I needed one]... like a large set of collaborators” (P19).

Others appreciated that Cococo was able to yield control to the end-user, and viewed the

AI as more of a highly-proficient helper: “An art assistant, who is extremely proficient,

but has a clear understanding of who is in control of the situation“ (P18).

In contrast, participants called the conventional interface a “brilliant composer” (P16)

they could outsource work to, but who was more difficult to communicate with. When

working with the conventional interface, users were optimistic about its ability to surprise

them with musical suggestions that they would not have thought of on their own but

pessimistic about its “blackbox” (P19) persona when communicating and “take-it-or-leave-

it” (P6) attitude when working together.

These differing views of the co-creation process with the two interfaces led to distinct

ideas of where each interface would be most useful. For the conventional interface, partic-

ipants imagined it to be useful when they feel “lazy, and need to generate ideas quickly,”

(P2) or when they feel competent to compose most of a piece manually but are open to

brilliant, unexpected suggestions. On the other hand, Cococo was useful when the user

“has some [creative goals] in mind that [they] want to build upon” (P13).
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2.8. Discussion

2.8.1. Partition AI Capabilities into Semantically-Meaningful Tools

Our results suggest that the Steering Interface Layer played a key role in breaking the

co-creation task down into understandable chunks and generating, auditioning, and edit-

ing these smaller pieces until users arrived at a satisfactory result. Unexpectedly, novices

quickly became familiar with their own creations through composing bit-by-bit, which

later helped them debug problematic areas. Interacting through semantically meaningful

tools also helped them learn more about music composition and effective strategies for

achieving particular outcomes (e.g., the effect of a minor key in the composition). Ulti-

mately, AI-steering tools affected participants’ sense of artistic ownership and competence

as amateur composers, through an improved ability to express creative intent.

2.8.2. Bridge Novice Primitives with Desired Creative Goals

Our study also revealed trade-offs between different levels of musical abstraction: whereas

novices typically struggle to operate on the lowest level (raw notes), deep generative

models operate at the highest level (generating entire compositions). Despite hopes that

they can make music composition more approachable to lay novices [76], we found in

our studies that this highest level of abstraction is surprisingly challenging for novices to

work with. Instead, their interactions suggested utility in creating mid-level objects and

concepts upon which they can manipulate.

Though we created an initial set of dimensions for AI-steering, we were surprised that

participants already had a set of go-to primitives to express high-level creative goals, such

as long notes to convey calmness or ascending notes to express triumph and escalation.
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When the interactive dimensions did not explicitly map to these primitives, they re-

purposed the existing tools as proxy controls to achieve the desired effect. Given this,

one could imagine directly supporting these common go-to strategies. Given a wide range

of possible semantic levers, and the technical challenges of exposing these dimensions in

DNNs, model creators should at minimum prioritize exposing dimensions that are the

most commonly relied upon. For music novices, we found that these included pitch,

note density, shape, voice and temporal separation. Future systems could help boost the

effectiveness of novice strategies by helping them bridge between their building blocks to

high-level creative goals, such as automatically “upgrading” a series of plodding bass line

notes to create a foreboding melody.

2.8.3. Preserving Creative Experimentation in the Age of Increasingly Pow-

erful Generative AI

At the time this research was conducted, a generative AI model for music could not yet

automatically produce music conditioned on emotions found in text or imagery. In the

present day, however, new generative models for music have demonstrated the ability

to generate music from text descriptions [3, 79]. Such text-based generative AI models

open the possibilities to requesting a generative AI to create songs that span a variety of

musical styles, moods and activities, and emotions. While it’s possible to prompt music

models to generate songs evoking multiple emotions (e.g., ”piano piece: stuck, reflective,

sad”), we might expect—by generalizing these findings—that directly using emotional

prompts would take away a composer’s engagement in the process of interpreting what

an emotion might sound like and how to use musical concepts to evoke it. In this way, in
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order to preserve a creator’s engagement in the process of directing fine-grained decisions

in the creative process, user interfaces for language-based generative AI may need to be

reconfigured to encourage the type of iterative steering we advanced in this chapter. One

can imagine a more steerable language-based AI that encourages users to use mid-level

constructs and describe semantically-meaningful chunks or layers they want to control.

For example, such interfaces could expose knobs in the interface for controlling musical

attributes, which could be easily translated into prompts for the model to follow (e.g.,

an sustained electric bass that plays arpeggiated notes; high-pitched bongos with ringing

tones). Baking into the user interface these semantics about musical attributes and layers

could provide novices affordances for learning what fundamental partitions they can have

control over and what musical and semantic qualities they can begin to give them.

However, other aspects of novice user’s interaction capabilities are not present in these

current text-based music generation interfaces. The brick-building metaphor – which

allowed people to listen to a part of the music, adjust the qualities of it before moving

onward, is not supported. Since brick-building and incrementally generating pieces of the

music supported important outcomes like better understanding of the music and feeling

involved at different stages of the process, we might infer that these user outcomes are

still undersupported by the default interfaces for text-based music models which still

generate the entire song at once. Future work should explore what interactive capabilities

or creative workflows do preserve and expand many of the meaningful processes and

activities that make music creation joyful, creative, and challenging but rewarding.
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2.9. Conclusion

We found that AI-steering tools not only enabled users to better express musical intent,

but also had an important effect on users’ creative ownership and self-efficacy vis-a-vis the

AI. Future systems should expose mid-level building blocks, divulge the AI’s capabilities

and limitations, and empower the user to define the partnership balance. Taken together,

this work advances the frontier of human-AI co-creation interfaces, leveraging AI to enrich,

rather than replace, human creativity.
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CHAPTER 3

An Interface Layer for Expressing High-Level Ideas using

Low-Level Constructs

Another type of issue with trying to use AI capabilities is when the concepts a person

wants to express are still many levels of abstraction removed from the constructs made

available by an AI system. Such is the case for designers developing context-aware AI

social technologies, where the high-level concepts of a situation—such as the socio-cultural

meaning of why a similar situation could cultivate feelings of shared experiences—are

semantically far from the available AI context detectors made at the level of location

categories.

In this chapter, we introduce a human-AI interface layer for expressing high-level ideas

using low-level constructs. This Expression Interface Layer reconfigures the user interface

for communicating overarching intentions to AI systems by providing a visual workspace

with cognitive support tools that helps people flesh out their high-level concepts and

forage for relevant and precisely-operating AI constructs. In studies, we show that the

Expression Interface Layer’s cognitive bridging tools can help designers richly express

their high-level ideas by helping them define a more expansive set of concepts for ways to

realize it. Additionally, the cognitive bridging tools ensure that the AI constructs used

operate as a designer intended. In this way, Expression Interface Layers give designers the
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tools to engage in an effective process for conveying their high-level, overarching ideas to

AI systems, when the semantic gap between their ideas and AI’s representations is large.

3.1. Introduction

Context-aware technologies have an enormous potential to be helpful and responsive

within many situations that arise during people’s daily lives. Increasingly, mobile context-

awareness applications are being developed to help end-users think about places they are

visiting, and what they can do there. For example, such applications can remind users

to engage in personal activities or routines (e.g., buy vegetables, listen to live music)

based on relevant places they encounter in their daily lives [32] or help users find coin-

cidental moments to engage in shared experiences with other people across distributed

contexts (e.g., when family members living apart can share a meal together) [103] The

proliferation of context-aware applications have been possible due to the advances in

better mobile sensors, location-based information sources (e.g., Foursquare, Yelp), and

machine learning algorithms—which have made available a diverse set of component de-

tectors that infer semantically-meaningful aspects of a user’s context, which we refer to

as context-features (e.g., whether a user is moving or stationary, whether they are visiting

a park, whether their current weather is windy or not). By providing such semantically-

meaningful context-features to program with, frameworks for building context-aware ap-

plications have made it easier for application designers to define how an application should

trigger and act based on a user’s current context.

Despite this focus on better component detectors and context-features, it is difficult

to encode human concepts of a situation into a machine representation using available
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context-features. While context-features provided by mobile context frameworks are use-

ful for detecting events or actions at the level of locations and place categories (e.g.,

a restaurant tagged with the place category ‘soup’; a ‘park’), it’s difficult to use such

context-features to describe situations that would support experiences (e.g., ‘enjoying a

warm meal on a cold day’; ‘good for tossing a frisbee’) when these concepts are several lev-

els of abstraction removed from the context-features. While context-programming frame-

works and trigger-action programming tools [38, 127] have made it easier for authors

to access a variety of context-features, their processes for programming the situational

detectors are limited to creating simple situation detectors at the level of the events and

locations which can be detected. Instead, we argue that what is needed are programming

environments that explicitly support the cognitive work required to flesh out an author’s

concept for how a situation might enable experiences (e.g., ‘soup’ is one category of restau-

rants for a cold day, but where else?) and translate how available context-features apply

to their concept. If designers could encode their human concepts of a situation—such

as what contexts are appropriate for engaging in a personal activity, or what contexts

support engaging in a digitally-mediated shared experience—it would improve the ability

of applications to recognize human situations and facilitate appropriate activities within

them.

To resolve these challenges, I developed an Expression Interface Layer that reconfig-

ures how designers can use the existing AI features to express their high-level concepts

of situations. This Expression Interface Layer is instantiated in a visual programming

environment named Affinder. Using Affinder, a designer can take their ideas for a sit-

uation they want to use in a location-based, context-aware application and translate
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their human concepts of that situation into a logical expression using readily detectable

context-features, which we call a concept expression. Applications can then use concept

expressions to identify the situation across end-users’ mobile contexts. For example, a de-

signer of a mobile app that reminds users of opportunities to engage in personal activities

or routines can construct the high-level concept “awesome for tossing a frisbee around”

by using simpler concepts and detectors such as open recreational areas (disc golf, parks,

playgrounds, beaches), weather is not disruptive (not windy), and while there is daylight

(time between sunrise and sunset).

Affinder’s Expression Interface Layer was designed to structure a construction process

that allows people to flexibly switch between breaking down a higher-level concept into a

construction that gets closer to the detectable features (top-down) and in defining more

general concepts that link detectable context-features to human concepts (bottom-up).

To support this, Affinder uses a block-based programming environment that provides

a single, visual workspace for authors to (1) declare concept variables, or intermediate

concepts that serve as links between an abstract concept and the context features; (2)

forage for context-features that match their concepts; and (3) compose representations

using logical operators; see Figure 3.1.

From our design-based research process creating Affinder, we also uncovered a set of

bridging challenges, or specific obstacles that arise when trying to express concepts of

a situation that cannot be directly specified with any single, detectable context-feature.

First, concept expressions may be too narrowly defined, or underscoped, when a designer

retrieves one context feature for a concept (e.g., ‘parks’ for ‘grassy fields’) but misses

other context features (e.g., ‘football’ fields) that also match the concept. Second, the
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Figure 3.1. We built Affinder as an instantiation of a human-AI Expression
Interface Layer. Affinder is a block-based programming environment for
constructing concept expressions that effectively express a designer’s con-
cepts of a situation and the activities it affords (e.g., situations to share a
cheers) to machines using available context-features. The visual workspace
(top-right) supports declaring intermediate concepts that serve as links be-
tween an abstract concept and available context features; foraging for con-
text features through browsing and searching hierarchies of features; and
composing representations. As an Expression Interface Layer, Affinder im-
plements three cognitive bridging tools: (1) an unlimited vocabulary search
tool (top-left) helps designers discover available context-features relevant
to their concepts; (2) reflect and expand prompts help designers generalize
their notions of the concept they are trying to express and expand their
foraging efforts; and (3) simulation and repair tools (bottom) help with
identifying and resolving issues with the precision of concept expressions on
real use-cases.

underscoping problem can also occur if a designer fixates on their early concepts of a

situation (e.g., ‘grassy fields’ are good for frisbee tossing), which may result in a too

narrow of an effort to forage for context-features that are relevant to the situation (e.g.,
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in narrowly searching for context-features matching ‘grassy fields’, a designer can miss

‘beaches’ that are also good for frisbee tossing). Third, concept expressions may also

include detector inaccuracies when a designer uses a context feature that does not evaluate

the concept expression as expected (e.g., ‘parks’ may match all parks, including dog parks

and skate parks that may be less desired as places for tossing a frisbee). To address

these bridging challenges, Affinder contributes three core features that support designer

cognition when expanding their concepts and translating them to machine features: (1)

an unlimited vocabulary search for discovering context features they may have forgotten;

(2) reflect and expand prompts that help designers generalize their notions of the concept

they are trying to express and expand their efforts to forage for the context-features;

and (3) simulation and repair tools for identifying and resolving issues with how machine

detectors may operate on real use-cases differently than an author intends.

We conducted a between-subjects test comparing authors’ use of Affinder with its

cognitive bridging tools vs. a baseline version of the block-based construction environment

that only supported an opportunistic construction process. We find that the Expression

Interface Layer’s cognitive bridging tools can help designers richly express a high-level

situation by helping them define a more expansive set of concepts for ways to realize

it (e.g., grassy fields and sandy areas are both open spaces that support throwing a

frisbee). They expanded their own concepts while using the unlimited vocabulary search

to forage for AI context-features, and while using the reflection and expand prompts to

capture intermediate ideas about the more general reasons why a low-level construct they

encountered was linked to their high-level idea. The cognitive bridging tools also helped

designers to find relevant and accurate links between their intermediate concepts of a
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situation and the features that a context-aware AI system can understand and detect.

Designers used simulation and repair tools to recognize and address issues with their

concept expression operating differently on real-world cases than they expected.

In the rest of the chapter, we review related work to motivate challenges in using

conventional interfaces for communicating high-level ideas of a situation to an intelligent,

context-aware system. We describe the bridging challenges that arise during construction;

and we detail the design of Affinder, a visual workspace equipped with cognitive bridging

tools. We then report on the results of the lab study of Affinder, showing how the Expres-

sion Interface Layer’s cognitive bridging tools aided designers in effectively bridging from

their overarching concepts of situations to the available context-features. Finally, we end

with a discussion on takeaways and future directions for developing Expression Interface

Layers that support bridging between human concepts and machine representations.

3.2. Background

Context-aware systems are made up of two main components: (1) context providers,

which use algorithms and inference techniques to extract attributes of a persons’ context

from sensors, which we refer to as machine detectable context-features; and (2) context-

awareness services, which continuously reason about these attributes of context to perform

useful actions on behalf of the user [116]. To develop use-cases for context-aware appli-

cations, authors must encode their concepts of a situation into a machine representation

using context features made available by context providers. Since the created machine

representations are composed of detectable context-features, context-aware services can
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then use these machine representations to act and facilitate interactions within desired

situations.

Over the last two decades, research in context-aware computing and machine learning

has significantly expanded the ability of context providers to infer aspects of human

context across the dimensions of location, identity, activity, and time [2]. This work

has led to numerous component detectors for various facets of context through better

data, algorithms, and sensors (e.g., [80]). More recently, research systems have focused

on using machine learning to model complex human situations within the domains of

human activity recognition [60, 93], interruptibility and optimal work breaks [88], and

mood-related mental health [108].

Today, many context features are widely available through mobile context providers

(e.g., the Google Awareness API [100]) that implement a wide range of component detec-

tors, including time, location, places, activity, and weather. Moreover, context-aware and

trigger-action programming tools (e.g., iCAP [38], and IFTTT, or if-this-then-that [127])

have made it easier to program with context features. But while existing context provider

APIs and programming tools provide application designers access to large sets of context

features, they provide little support for expressing and encoding higher-level concepts of

a situation that may be several levels of abstraction removed from these features. For

example, while several trigger-action frameworks (e.g., multi-trigger variants of IFTTT)

do support composing multiple context-features together into a single event, the situa-

tions expressed are assumed to be near the feature level, which allows rules to be built by

accessing conceptual features directly [127].
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When concepts of a situation are difficult for users to encode with the available fea-

tures, programming by demonstration approaches have been successful in helping users

map between a high-level situation and the available context features and sensors [36].

However, these approaches assume human teachers have an unchanged understanding

about a concept and thus can easily provide positive and negative examples to a model

to support. For our setting and task of expressing an author’s concept of situations that

support a desired activity, the application designer can suffer from design fixation [9, 29],

which could result in the created machine representation being underscoped, or too nar-

rowly defined, with respect to all the ways a situation could support a desired activity.

Ultimately, unless we help the human expand their conception, whatever way they ex-

press it to machines (explicitly through construction, or implicitly through labels) will be

limited to their current conception. For our proposed solution, Affinder provides specific

cognitive scaffolds for the construction process, where an author declares their concepts

and forages for context-features explicitly, which we argue naturally helps them flesh out

and expand their own ideas in the process.

One particular challenge that arises in the construction process is identifying context

features that support engaging in an experience or activity. Prior work by Dearman

et al [33] attempted to do this by identifying potential activities supported at various

locations by mining community-authored content (e.g., reviews). This approach extracts

verb-noun pairs from community-authored content about a location in order to identify

the potential activities supported by that location. While this work creates an extensive

set of component detectors for potential activities supported by a location, it is limited

to exact activities (e.g., drink soup) but can struggle to return results for higher-level
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situations of interest (e.g., places to enjoy warm food on a cold day). In other words, their

approach may be particularly useful for finding context features matching specific (low-

level) activities, but less useful for identifying features related to higher-level situations

of interest. To address this problem, we introduce a more flexible unlimited vocabulary

approach for finding features, and additionally introduce tools for representing and acting

on relevant concepts across levels.

3.3. The Bridging Problem

In this section, we introduce the idea of the bridging problem: the difficulty in en-

coding human concepts of how a situation supports desired experiences into a machine

representation using available context-features. For example, an author may want to

design a situational trigger that identifies everyday opportunities for users to perform a

playful activity like throwing a frisbee. Starting with their human concepts, an author

wants to include other place contexts like ‘parks’ good for tossing a frisbee, and also rec-

ognizes that most ‘open fields ’ would be generally appropriate for this activity. Now, the

author needs to figure out how to link between their concepts of how a situation enables

tossing a frisbee and the detectable context-features.

A key technical challenge is figuring out an effective construction process for bridging

from human (mental) representations of a conceptually-rich human situation to a machine

representation built using available context features. In one direction, a top-down process

can support a creator decomposing a situation into simpler concepts, but can frequently

lead to scenarios where a creator finds that there are no matching context features for

such concepts (e.g., no detector for ‘open space’). In earlier systems such as iCAP [38],
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such concepts are simply ignored and left out of the construction. In another direction,

bottom-up approaches allow for reusing and composing context features [121, 127], but

developers can become stuck when they do not know a priori what context features may

be useful for expressing an abstract idea that they have. To overcome these challenges,

we recognized that authors need a more fluid construction process that allows them to

choose a top-down or bottom-up strategy in order to find a link between their concepts

of the situation and the available context-features.

In addition to enabling a more fluid construction process, we focused our design efforts

on uncovering and addressing some of the specific challenges that arise in this construction

process. We used a design-based research method in which we iteratively prototyped and

tested with participants across two rounds of pilot tests (N = 7, N = 6) to understand how

Affinder supports an author’s process in constructing high-level situations from available

context-features, and any remaining obstacles that arose. We tasked participants with

expressing high-level situations that identify opportunities to have shared experiences in

a context-aware social application use-case (e.g., situations to share a cheers; awesome

situations to throw a paper airplane; situations to watch the sunset over water).

Through this phase of iterative prototyping and pilot testing, we identified three gen-

eral bridging challenges authors face when there is a mismatch between their human

(conceptual) representations and the machine’s available representations. Across these

challenges, we found that they can be caused by cognition difficulties in fleshing out con-

cepts for how a situation supports potential activities, and in translating these concepts

into available machine detectable features.
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Figure 3.2. We identify three construction challenges, and implement their
corresponding solutions in Affinder: (A) concept expressions can be un-
derscoped if designers fail to retrieve relevant features for a concept; (B)
concept expressions can be underscoped if concept variables are too nar-
rowly defined which limits efforts to forage for features; and (C) concept
expressions can have inaccuracies, when it executes not as a designer in-
tends.

3.3.1. Underscoped on Features

Concept expression may be too narrowly defined, or underscoped, when a designer recalls

one context feature for a concept (‘parks’ for open space) but forgets other context features

(e.g., ‘beaches’) that also match the concept. The underscoping problem can occur when

trying to translate from their concepts to the available features: when foraging for relevant

context-features from a long list of features, designers may fail to find a comprehensive

set of context-features matching their concept for a situation; see top-row of Figure 3.2.

We noticed in early piloting that the list of place category detectors provided by the

Yelp Places API [82] was extensive and thousands of items long, making it impractical
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for designers to comprehensively scan through the hierarchy of items. Designers could

use simple text search on this list, but they may not know all the names of the place

categories that Yelp defines a priori to know which ones will be useful. For example,

a pilot participant thought that “fields” would be a type of place listed on Yelp, and

with simple text search, this query returned “baseballfields”. However, there are many

other place categories (e.g., parks, football, stadiums, discgolf) which may contain the

open grassy field for frisbee tossing they conceptualized. Evidently, different designers

will have their own notions and vocabulary of a concept which makes it difficult to find

relevant machine features [52]. Thus, our first round of iterative development and piloting

aimed to support designers in finding the broader set of place context-features based on

their notions of a high-level activity and situation.

3.3.2. Underscoped on Concepts

The underscoping problem can also occur when designers fixate on a narrow set of inter-

mediate concepts to describe their overall concept for a situation. Studies of designer’s

cognition and metacognition highlight that designers have a tendency to fixate their search

for solutions, with a cognitive bias towards their earliest solution ideas [9, 29]. Much like

the literature suggests, we saw this with participant designers in our pilots. For instance,

the middle-row of Figure 3.2 illustrates how one designer from our pilots narrowly con-

ceptualized the idea of “situations to throw a frisbee”. They started by recalling “parks”

as a common place they associate with being able to perform the activity. However, after

using this search term to find a few place context-features that afforded the activity (e.g.,
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park, dogpark), the participant stopped their search for other potentially relevant place

category context features.

What this participant didn’t conceptualize was a more generalized notion of what

makes a place good for tossing a frisbee (e.g., a place must have “open areas to play”).

Had they had a broader notion, they could have continued to forage for context-features

in other part of conceptual space (e.g., “open area”, “fields”), and found other context-

features relevant to detecting situations to toss a frisbee (e.g., playgrounds, baseball fields,

discgolf). Thus, our second phase of pilot development focused on helping designers push

past their earliest concepts for a high-level situation, and encourage them to expand their

concepts and associated context-features for a situation.

3.3.3. Concept Expression Inaccuracies

Creating a concept expression that operates accurately in real-world scenarios requires

iterative refinement. Concept expressions can operate inaccurately when a context-feature

does not operate as a designer intends. For example, they may not precisely match a

concept (e.g., public gardens are parks but are not good for frisbee tossing); see bottom-

row of Figure 3.2.

In early prototyping, we observed that users’ mental-model about a context-feature,

based upon only its name, can often mismatch how a context-feature actually applies

to real-world cases. This led to participants adding context-features which inaccurately

matched the concept expression when applied to real-world place venues (e.g., ‘recreation’

refers to indoor recreation centers and gyms which are not appropriate for frisbee tossings).
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As a low-fidelity solution for this challenge, we allowed authors to reference the Yelp web-

site to view example locations that were listed for any place category they were uncertain

about. Eventually, we incorporated this as an integrated interface in Affinder, where users

could view several example location venues listed for a place category context-feature.

Additionally, a more subtle way concept expressions can inaccurately match was when

several real-world cases challenged a designer’s primary mental model of a context-feature.

For example, a user was originally thinking of “parks” as a category for throwing paper

airplanes, but recognized through foraging for other place category context-features that

some “parks”, such as “dog parks” would more likely lead to “a dog chewing up the

airplane.” Thus in our second round of pilot prototyping, we focused on developing tools

integrated within Affinder’s construction environment to help designers simulate their

concept expressions on real-world cases so as to surface when concept expressions and

their context-features operate differently than intended.

3.4. Affinder: a Human-AI Interface Layer for Expression

In this section, we introduce a human-AI interface layer for expressing high-level ideas

using low-level constructs. An Expression Interface Layer reconfigures the user interface

for communicating overarching intentions to AI systems by providing a visual workspace

with cognitive bridging tools that helps people flesh out their high-level concepts, forage

for relevant and precisely-operating AI low-level building blocks, and finally construct

representations that an AI system can use to detect and act on.

We instantiate this Expression Interface Layer into Affinder, a programming environ-

ment for constructing concept expressions that effectively translates an author’s human
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concept of a situation into a machine representation using context-features that can be

acted upon computationally. Specifically, Affinder allows a designer to take a situation

they wish to use in a location-based or context-aware application (e.g., where to go to share

a warm meal on a cold day), and to translate it— through the process of construction—

into a logical expression based on available context features that can be readily detected

and used with an application (e.g., restaurants serving soup OR restaurants serving spicy

food).

To support this, Affinder provides (1) a block-based programming environment that

facilitates an opportunistic construction process designed to overcome challenges with

strictly top-down or bottom-up strategies. To address the three bridging challenges that

arise during the construction process, Affinder also provides cognitive bridging tools con-

sisting of (2) an unlimited vocabulary search for discovering context features one may have

forgotten; (3) reflect and expand prompts that help generalize one’s concepts of the situa-

tion and expand one’s efforts to forage for context-features; and (4) simulation and repair

tools for identifying and resolving issues with how context features may operate on real

use-cases differently than an author intends. We describe each of these functions below.

3.4.1. Block-Based Construction Environment

To overcome the shortcomings of top-down and bottom-up approaches, we draw on theo-

ries from opportunistic planning [64] to support an opportunistic construction process, in

which a creator can follow both top-down or bottom-up processes at any time. Decisions

and observations during construction may suggest new ideas or illuminate problems that

cause the creator to shift their strategy. To support this construction process, Affinder
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Figure 3.3. Affinder’s Toolbar provides access to building blocks such as
context features derived from weather, time, place in addition to logical
operators like and, or, not, =. From the toolbar, users can drag and drop
building blocks into the Work Area which is used to store relevant features
and compose representations from building blocks. Affinder’s Search Inter-
face returns relevant place context-features. A button next to each ‘adds’
the feature to the work area.

employs a block-based programming environment that provides a single, visual workspace

in which designers can (a) declare concept variables to represent intermediate concepts

that serve as links between an abstract concept and available context features; (b) for-

age for context features by browsing and searching through categories of features; and

(c) compose representations using logical operators; see Figure 3.3. We argue that this

block-based approach can effectively support an opportunistic construction process by

visually linking concept variables to context features; supporting recognition over recall;

and reducing cognitive load by helping developers focus on concepts and how they are

connected instead of on syntax and code.

Declaring concepts entails breaking down an idea about a situation into smaller con-

cepts. These smaller concepts serve as a link between a conceptually-abstract situation

and the available context features, and can be declared explicitly with concept variables.
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A creator can declare concept variables before defining their contents; this provides a

visual reminder to compose building blocks later for the concept. For example, for a

construction expressing ‘situations to share a cheers’, a user can represent a smaller con-

cept ‘drinking an evening beer’ by declaring a concept variable, defining its contents using

context-features and logical operators, and using the defined concept variable in a top-level

concept variable named ‘share a cheers’.

Foraging for features involves both searching and browsing for building blocks. Cre-

ators can either go in a top-down fashion by using their declared concepts to guide the

types of building blocks they might look for, or a bottom-up fashion where they browse

through the available features to see which ones might be relevant. A creator can use

the Toolbar to navigate to building blocks based on categories such as weather, time of

day, time of week, and time zone (Figure 3.3, Left of Middle). Creators can also use the

Search Interface (Figure 3.3, Far Left) to find context-features based on a thousand place

categories on Yelp. For example, a user expressing ‘having an evening beer’ could browse

for features based on time of day and find a ‘nighttime’ block to drag into the work area;

they might query the search interface for ‘beer’ to find relevant place context-features to

add to the construction.

Composing Representations starts after creators find several context building-blocks

which they combine together with logical operator blocks like and, or, not. Figure 3.3

shows an example of a logical composition used in the definition of ‘drinking an evening

beer’ as various place contexts for having a beer (‘barcrawl’, ‘tikibars’, ‘beer and wine’).
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3.4.2. Unlimited Vocabulary Search

Concept expressions can be underscoped in regards to the context-features a creator

decides to include. This can occur when working with lengthy hierarchies of context-

features (e.g., Yelp place categories), since designers can struggle to forage for features

that can represent their intermediate concepts. To mitigate underscoping on detectable

context-features, Affinder uses textual metadata from available APIs (e.g., reviews from

Yelp) to create an unlimited vocabulary [52] of terms associated with the context features

that users can query for based on their conception. This allows a creator to directly query

for context features using aspects of a situation of interest, e.g., based on objects that

afford actions, actions that can be taken, activities that people are engaged with, etc. This

helps developers discover context features they may have forgotten, and to broadly shift

their notions of the concept they are trying to express and how to express it throughout

the process of construction. For example, using Affinder’s unlimited vocabulary search,

the query ‘field’ could match the feature ‘parks’ through a review that says “Other aspects

of the park include a people park with slides and swings, soccer fields, baseball fields, and

plenty of open space;” or ‘fields’ could match the feature ‘discgolf’ through a review that

says “The majority of the course is quite open and flat, playing around some decent sized

trees, grassy fields and pedestrian pathways that are considered out of bounds.”

3.4.3. Reflect and Expand Prompts

To mitigate underscoped concept expressions caused by design fixation on intermediate

experience concepts, Affinder provides prompts that encourage users to reflect on gener-

alizable concepts about why a context-feature is appropriate for the situated experience
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Figure 3.4. A series of two screenshots illustrates how a user might use the
reflect and expand prompts to create new generalizable concept variables,
and expand their efforts to forage for features.

they are designing, and to expand their concept expression by foraging for context-features

using this generalizable concept.

Each context-feature or concept variable can be used as the source of the reflection;

reflection prompts can be activated for any of these by clicking on the corresponding blue

question mark; see Figure 3.4. For example, on the left-side of Figure 3.4, a user has

added the context-feature ‘parks’ in their work area, and chooses to reflect by pressing

the ‘?’ button associated with the ‘parks’ context-feature. The reflection prompt asks

them the question “Why is ‘parks’ appropriate for the experience ‘situations for tossing

a frisbee’?”. On the right-side of Figure 3.4, the user has proceeded to answer by typing

‘open areas to play’. Upon pressing the tab key, a new concept variable is created that

represents this generalized notion. They can subsequently use the search interface to find

context-features matching the concept ‘open areas to play’. We designed the ‘?’ reflect

button to be always visible and attached to the context-features in the workspace after

observing during early testing that authors would sometimes forget that the reflect button

was a feature they could use.
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A) Simulating Concept Variables, and Labeling Inaccurate Cases B) Repairing Concept Variables, and Resolving Issues

Figure 3.5. Designers can simulate concept expressions composed of mul-
tiple context-features (e.g., ‘parks’ or ‘beaches’ are ‘open spaces to play’).
Simulation can reveal cases in which context-features may fail to accurately
represent specific concept variables (e.g., some ‘parks’ include locations like
a conservatory and a lily pool which are not ‘open spaces to play’). After
labeling these inaccurate cases, designers can repair concept expressions to
make better use of existing context features (e.g., parks only if they are
also not ‘gardens’ or ‘venues’). Simulating the repaired concept moves the
offending case to a list of resolved cases.

.

3.4.4. Simulation and Repair Tools

Given the challenge of knowing how a place context-feature applies to real-world cases

based only its name, Affinder implements a feature for viewing example locations for

a context-feature of interest (e.g., a list of the top 20 example locations tagged with

the context-feature ‘active’ in Chicago), so designers can form a more accurate mental

model of how a place category is used by the Yelp context-provider. This can help answer

questions about context-features which are named in unexpected ways, such as what types

of places the context-feature ‘active’ refers to.
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Beyond viewing example locations for individual context-features, the full version of

Affinder provides features for (A) simulating the execution of concept expressions com-

posed of multiple context-features to help designers analyze real-world cases and label

any that inaccurately represents the concept variable (as shown in Figure 3.5, Left); and

(B) supporting designers to repair their concept expressions, so as to resolve outstanding

issues in the execution of the concept variable (as shown in Figure 3.5, Right).

Affinder’s Repair Tools supports two methods for repairing a concept expression so

they operate more accurately: (1) using logical operators to exclude specific context-

features; and (2) discarding features that are too inaccurate to be useful. First, context-

features may not precisely match a concept (e.g., public gardens are parks but are not good

for frisbee tossing). To resolve this problem, the first method of repair supports designers

in excluding specific context-features (e.g., define ‘open spaces to play’ as ‘parks’ that are

also not ‘gardens’). By doing this repair, a designer can still effectively add a context-

feature to their construction to increase coverage (e.g., most parks are good for frisbee

tossing), while ensuring that this addition does not sacrifice precision (e.g., so that special

parks that don’t fit ‘open grassy area for play’ concept would not be identified for the

situation or activity). To help designers quickly identify cases that would require this

type of repair, the list of detected cases is ordered by cases that are tagged with multiple

context-features (a conservatory tagged ‘parks’, ‘gardens’, and ‘hiking’) appear before

cases tagged with a single context-feature (a beach tagged ‘beaches’).

Second, a context-feature may be too inaccurate to be useful (e.g., ‘recreation’ mostly

refers to indoor recreation centers and gyms which are not appropriate for frisbee tossing).

Thus, the second method of repair allows a designer to discard this context-feature from
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the construction. By recognizing when a context-feature is too inaccurate and making the

choice to discard it entirely, designers are able to assess when a context-feature they’ve

added to their construction would inaccurately represent the high-level concept they were

trying to express, and ultimately degrade the precision of their expression.

3.5. Implementation

Affinder is a Meteor.js web application1 that uses Google’s Blockly library [50] for its

block-based construction interface. Affinder uses Blockly to generate a concept expres-

sion’s corresponding Javascript code (e.g., (parks || beaches) && !windy; ) which is a

logical predicate that can be used by context-aware services to check whether the user

is in a situation that matches the concept expression, or to produce a list of situations

and locations that would. Applications can integrate this generated code by requesting a

user’s current context-features (e.g., Is the Yelp place category ‘park’ currently detected

for a user? Is the user’s current detected weather ‘windy’?) from a context-provider API

and evaluating the predicate. Affinder’s simulate and repair tool uses the generated code

to simulate the concept expression on real-world place venues.

Affinder’s unlimited vocabulary search engine was built by applying the term-frequency

inverse-document frequency (TF-IDF) statistic to a corpus of 1241 documents corre-

sponding to Yelp place category context-features. Each document comprised community-

authored reviews for a single place category (e.g., ‘parks‘) across all listed places in 8 major

metropolitan areas [81]. The reviews associated with a place venue which is tagged with

multiple place categories (e.g., a public park tagged as ‘park’, and ‘playground’) will be

1https://github.com/NUDelta/affinder

https://github.com/NUDelta/affinder
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included in the text documents associated with all place categories. During iterative pro-

totyping and testing, we observed that this also had the desirable side-effect of broadening

the set of returned place category context-features. Document relevance for a query was

based on the sum of TF-IDF values for all terms in a query [115], and the 25 top place

categories are returned.

Affinder’s feature for simulating and repairing concept expressions uses the Yelp Fusion

Business API [82] to return a list of real-world places for a given city. Our implementation

of simulating a concept expression creates a list of locations by taking the set union of

the top 20 locations for each of the context-features in an expression (e.g., a concept

expression open spaces = parks || beaches has two context-features and will return 40

real-world locations for a target city). Then, the set of positive predictions is obtained

by applying the concept expression’s corresponding Javascript code to the list of location

venues.

3.6. User Study

We performed a comparison study to evaluate the extent to which Affinder supports

creators in effectively encoding their human concepts of a situation into a machine repre-

sentation using available context-features. Specifically, we conducted a between-subjects

study that compared authors’ use of the full version of Affinder with all the features for

overcoming the bridging challenges vs. a baseline version of Affinder with a reduced set

of features.
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In this study we ask: RQ1: Does unlimited vocabulary search help designers find

relevant context-features, to overcome the challenge of a concept expression being un-

derscoped? RQ2: Do reflect and expand prompts help designers stretch their concepts

and efforts to forage for context features? RQ3: Do simulation and repair tools help

designer’s recognize cases when a concept expression does not operate as intended on

real-world cases, to overcome concept expression inaccuracies?

3.6.1. Method and Analysis

3.6.1.1. Experimental vs. Baseline Versions. For this between-subjects study, we

provided participants two versions of Affinder: an experimental version with all the core

features for overcoming the specific bridging challenges (unlimited vocabulary, reflect

and expand prompts, simulation and repair tools), and a baseline version without these

features. Both versions support an opportunistic construction process through its block-

based environment where an author can follow a top-down or bottom-up process at any

time; and both versions use the same set of base context-features including Yelp place

categories, time, and weather features.

However, the baseline does not include the core features that address specific challenges

arising within the bridging problem.

(1) Instead of the unlimited vocabulary search, authors forage for place category

context-features using a simple text search (e.g., searching ‘park’ will match

context-features ‘parks’ and ‘parking lots’, whereas searching ‘frisbee’ returns
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no place categories). We hypothesize that without unlimited vocabulary, au-

thors using the baseline will struggle to access relevant features based on their

conceptions because they will not know the exact names of the place categories.

(2) Authors using the baseline do not have explicit prompts for reflecting and expand-

ing concept expressions. Without these prompts, we hypothesize that users may

fixate on their early concepts of a situation, and thus have conceptually-narrower

searches for context-features.

(3) Authors using the baseline cannot simulate how their entire concept expression

operates on real-world cases, nor keep an issue list to guide the repair of ex-

pressions. Instead, authors are only provided the tool that allows them to view

examples of place venues for a single place category. This allows users to clarify

the usage of any context-features they are uncertain about, such as ones that

are named in unexpected ways (e.g., what kinds of locations would be tagged on

Yelp as the place category “active”?). We hypothesize that without the full set of

simulate and repair tools, authors will miss cases where their concept expression

operates differently than they intended, which will result in concept expression

inaccuracies on real-world cases.

3.6.1.2. Participants. We recruited 14 participants from several undergraduate HCI

classes from a mid-sized university in the Midwestern US. Everyone had some prior back-

ground in designing computing technologies. While participants were not specifically

selected to have a background in developing location-based or context-aware computing

applications, we provided them with sufficient background material on the potential uses

of our application and how our application would detect end-user contexts; we describe
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the details of our background and tutorial procedure in the next section. Each participant

was compensated with a $25 gift card for their participation in the 1 hour long study.

For this between-subjects study, 8 of the participants were assigned to use the version of

Affinder with all the technical features (unlimited vocabulary search, reflect and expand

prompts, simulation and repair tools), and the other 6 were assigned to use the baseline

version without all the technical features.

3.6.1.3. Study Procedure. Participants were asked to watch a 5 minute background

video prior to joining a video conference study session. In this video, they learned about

our vision for a context-aware, social application use-case in which the app helps friends

engage in a digitally-mediated shared experience when they are in similar situations at

distance [103]. We described an example scenario of how a friend in Chicago having

an evening beer and another friend in Taiwan drinking a morning tea could use the

application to share digitally-mediated cheers with their beverages. Participants were

told they would act as a designer of this context-aware application that uses mobile

context-features (e.g., place, weather, and time) to detect aspects of a situation that

would support engaging in these shared experiences. Specifically, they were told that

using Affinder, they would figure out (1) what the possible situations are where people

can engage in the shared experience (e.g., raise their beverages for a digitally-mediated

cheers) and (2) how to express these situations using context-features like Yelp place

categories.

They were then given a guided, hands-on tutorial creating a concept expression for

“situations to share a cheers” using the version of Affinder that they were assigned to (15

min); as the experimental version had more features to teach, their tutorial usually took
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longer. After the tutorial, users constructed up to two concept expressions for situations

to engage in shared experiences, as time allowed (30-35 min). These situations included

‘awesome situations to toss a frisbee’ and ‘situations for grabbing food that is good for a

cold day’.

With the full feature version, we expected users to expand their notion of the concept

they were expressing; therefore, these participants naturally spent more time on the task,

and often had time to complete only one concept expression. With the baseline, partici-

pants tended to naturally run out of ideas and complete their concept expression early;

thus, participants often had time to complete two concept expressions in the time avail-

able. We observed and recorded the participant’s construction process, and asked them

to talk-aloud to explain their decisions while creating the situation detectors. Finally,

they completed a post-study questionnaire and a semi-structured interview (15 min).

3.6.1.4. Measures and Analysis. Our answers to the research questions are triangu-

lated amongst 3 sources of data: (1) qualitative descriptions and summary statics about

the concept expression, captured as it evolved during the construction process and once

an author has completed it; (2) qualitative observations of authors’ behaviors and usage

of Affinder’s features; and (3) qualitative insights about participants thoughts and strate-

gies during their construction process. We opted to use this qualitative approach because

we can evaluate the core features of Affinder together in one interface while still gaining

insight into how using each of the core features make a difference in how the concept

expression evolves and how an author’s thoughts and strategies change.
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To summarize the created concept expression, we measured the breadth of context-

features included in the concept expressions by counting the number of relevant place

context-features included.

To answer RQ1, we noted search queries that were made and which relevant context-

features were added to the concept expression while using the unlimited vocabulary vs.

the simple text search. Additionally, we used talk-alouds and retrospective interviews to

understand (1) how the context-features a participant saw in the search results influenced

their thoughts, and (2) how these updated thoughts led to foraging and adding additional

context-features.

To answer RQ2, we asked about moments when users activated the reflect and expand

prompts. This included details about (1) the initial idea they chose to reflect on; (2) the

general concept they articulated that made their initial idea appropriate for the situation;

(3) how the general concept later influenced their thoughts as they talked-aloud; and

(4) what actions they did shortly afterward, such as unlimited vocabulary searches that

followed or how their concept expression evolved.

To answer RQ3, we looked for cases when users, after simulating their concept ex-

pressions, updated their concept expressions. Through talk-alouds and revisiting these

cases in the interview, we gained a better understanding of (1) a user’s prior notions for

how the intended a concept expression to operate; (2) what real-world case they found

that posed an issue or surfaced a misconception in how the concept expression operated;

and (3) how they decided to repair the concept expression through removing or explicitly

negating specific context-features.
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3.7. Results

Figure 3.6. Two concept expressions made with the full version of Affinder
with all its features. The first construction expresses ‘grabbing food for a
cold day’ as having hot beverages (tea, coffeeshops, or coffee), spicy foods
(thai, japanese curry, bbq, or szechuan), or food with soup (hotpot, ramen,
or soup) and while the weather is cold. The second construction expresses
‘situations to toss a frisbee’ as open outdoor public spaces (parks, beaches,
or playgrounds, and when it is clear and daytime) and open indoor public
spaces (most gyms or recreation, but excluding cases with hiking or boxing.)

Across both versions of Affinder, our 14 participants (8 for experimental, 6 for baseline)

created a total of 20 concept expressions (10 for experimental, 10 for baseline). Figure 3.6

shows two constructions that were made using the version of Affinder with all of its core

features. An example construction expresses ‘grabbing food for a cold day’ as any places

serving hot beverages (tea, coffeeshops, coffee), food with soup (hotpot, ramen, soup), or

spicy food (thai, japanese curry, bbq, szechuan) and where the weather is cold. Another

example construction expresses ‘places to toss a frisbee’ as either open outdoor public

spaces (‘parks’, ‘beaches’, or ‘playgrounds’) where the weather is clear and it is daytime,

or open indoor public spaces (including most ‘gyms’ or ‘recreation’ but excluding cases
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Figure 3.7. Two concept expressions made with the baseline version of
Affinder without all of its core features. The first construction expresses
“grabbing food for a cold day” as when the weather is cold and a user is
eating soup, drinking hot chocolate or coffee (cafes, hong kong cafe, themed
cafe), drinking tea, or not having ice cream. The second construction ex-
presses “situations to toss a frisbee” as open fields (parks, beaches) and
when it is warm weather (clear and hot) and daytime.

that support outdoor activities, e.g., ‘hiking’; or activities associated with small spaces

e.g., ‘boxing’). In both of these example cases, participants used Affinder to flesh out

their concepts of the situation and bridge to a wide range of detectable context-features.

Participants switched between top-down and bottom-up processes, allowing their concepts

to evolve while foraging for the lower-level context-features. For example, a participant

expressing “situations to throw a frisbee” started by foraging for the first places that

came to mind such as parks and beaches; after declaring a concept variable for “outdoor

public spaces” to unify these place context features, they realized that several outdoor

and indoor places supporting athletic activities could also work, thereby expanding their

efforts to forage for a wider range of place contexts.
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In contrast, Figure 3.7 highlights two example constructions that were made using the

baseline version of Affinder. One example construction expresses ‘grabbing food for a cold

day’ as when the weather is cold and user is either eating soup (restaurants with ‘soup’),

drinking hot chocolate or coffee (‘cafes’, ‘hong kong cafes’, ‘themed cafes’), drinking tea

(places serving ‘tea’), but not eating ice cream (places serving ‘ice cream’). Another

example construction expresses ‘situations to toss a frisbee’ as places with open fields

(parks or beaches), where there is warm weather (clear or hot), and it is daytime. Similar

to participants using the experimental version, participants using the baseline were able to

create concept variables that linked their concepts of the situation to detectable context-

features. In addition, participants were also able to move between top-down and bottom-

up processes. For example, a participant started by foraging for place context-features

that matched their initial concept of “drinking hot chocolate” and found many context-

features related to cafes; then, they created more concept variables for other hot foods

one might find at cafes like “tea” and “soup” and foraged for context-features matching

these.

However, authors using the baseline declared concepts which were closer to the de-

tectable context features (e.g., drinking tea) as opposed to more general concepts that

would unify across context-features (e.g., hot beverages). As such, these concept variables

were often linked to one or two place context-features (e.g., eating soup as ‘soup’). For

participants who did declare more general concept variables (e.g., open fields), they often

struggled using the baseline to forage for a wider range of context-features matching these

concepts.
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We measured the concept expression for the breadth of context-features included in

their constructions. For the concept expression ‘grabbing food for a cold day’, the median

construction had 11 place context-features made with the full version of Affinder, while

the median construction had 8 context-features made with the baseline version. For the

concept expression ‘awesome situations to toss a frisbee’, the median construction had

4.5 place context-features when made with the full version of Affinder, while the median

construction made with the baseline had 2 place context-features.

Having described an overview of the concept expressions created using both versions

of Affinder, we now turn our attention to describing how each of the core technical fea-

tures (unlimited vocabulary, reflect and expand prompts, and simulation and repair tools)

supported designers’ construction processes.

3.7.1. Results for Unlimited Vocabulary Search

All 8 participants in the experimental condition used Unlimited Vocabulary Search to

forage for context-features from the Yelp Places API that matched their initial concepts.

For example, P7 tried to represent the concept of ‘snowy environments’ as a type of

situation for ‘grabbing food on a cold day’. By searching for terms such as ‘ice rinks’ and

‘snow day’, they were able to find several place context-features matching their concept

(skatingrinks, skiresorts, skischools). P1 said: “I liked to see other examples of other

[place contexts], I didn’t have to think about all these other [place contexts] on my own.”

In contrast, participants using simple text search struggled to forage for context-

features matching their conceptions. This happened because the concept vocabulary

users formed as search queries (e.g., ‘spicy’, ‘grass’, ‘meadows’, ‘frisbee’) returned few or
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Figure 3.8. Examples of queries made with the unlimited vocabulary search
that helped designers discover context-features that inspired updates to
their notions of their concepts. After a designer had shifted their notions,
they often continued searching based on their updated notions and added
new features.

no matching context-features. For instance, P7 expected various sport fields to show up

after searching ‘fields’, but ‘baseballfields’ was the only result. In contrast with the ex-

perimental condition, P9’s search for a similar concept, ‘soccer field’, using the Unlimited

Vocabulary Search helped them find ‘playgrounds’ and ‘college universities’ as relevant

context-features.

Beyond finding detectable context-features matching their conceptions, participants

using Unlimited Vocabulary Search were able to stretch and update their own concepts

of the situation they were trying to express. This happened while browsing through

the context-features in the search results that were associated but not what they were

expecting to find. We present some examples from our user study where the search

engine supported stretching concepts (see Figure 3.8). For example, when asked how the

unlimited vocabulary search was helpful, P9 explained: “What comes up in the [unlimited

vocabulary search] suggestions already gives you ideas. For example, after seeing soup, I

shifted my thinking to soup based queries, like pho and other soup noodle stuff... If I see

something related, but in a different way, it helps me generate more [concepts] that I want

to search.”
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Figure 3.9. Examples of how Reflect and Expand prompts helped users re-
flect on an idea part of their construction, articulate concepts about what
makes that idea appropriate, and expand their foraging efforts by subse-
quently searching and adding new concepts and features to their construc-
tion.

In comparison, for participants using simple text search, the absence of related context-

features led to stopping in their search for place context-features and expressing their

concepts. For instance, when P6, a participant in the baseline condition, was asked how

they decide when they have completed constructing, they said, “When I run out of tags

to search for... after finding ‘parks’ and ‘playgrounds’, grass and lawns wasn’t showing

me anything. Then I run out of ideas.”

3.7.2. Results for Reflect and Expand Prompts

Reflect and Expand prompts were used by 7 of the 8 experimental participants across 12

moments to articulate more generalized concepts and create new concept variables. 5 of

the 7 participants used the articulated concepts to expand their efforts to forage for new

context-features. We show in Figure 3.9 several examples of how reflection prompts led to

expanded foraging efforts. 4 of these moments lead to successfully discovering new context-

features that were added to their concept expression; while in 2 other moments, designers
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attempted to use the generalized concepts to search, but were ultimately unsuccessful at

discovering new features.

As one example of how reflection prompts led to adding new context-features to a

construction, P5 reflected on why their idea of hot chocolate was appropriate for ‘grabbing

food on a cold day’. Upon reflection, they realized that during winter holidays, “hot

chocolate” is good with other sweet, hearty baked goods – implying that “hot” food isn’t

the only attribute, but any sweet foods that remind of winter would also be good to eat

on a cold day. After P5 answered the reflection prompt, thereby creating a generalized

concept variable named ‘sweets to eat’, they began to forage for place context-features

matching this concept. By using searches such as ‘desserts’ and ‘bakery’, they were able

to add ‘desserts’ and ‘bakeries’ as additional place context-features to the construction.

However, for 2 participants, foraging for context-features using the generalized concept

variable did not find relevant context-features. For example, after P12 articulated how

‘parks’ are appropriate ‘situations awesome to toss a frisbee’ because they are ‘outdoor

public spaces‘, they could not find relevant features when searching for ‘open public

spaces‘ (which returned contexts like ‘sharedofficespaces‘, ‘libraries‘, ‘publicservicesgovt’,

‘galleries’, ‘communitycenters’). They tried to revise their query by searching ‘outdoors’,

but did not find any other context-features they did not already have in their construction.

This suggests that the generalized concept variables created through reflection may not

always be useful when used verbatim as search queries, which may require redesigning the

prompts to guide users to not only articulate the general reasons for appropriateness, but

also to form useful queries from these concepts that are aligned with the underlying textual

metadata (e.g., how others describe Yelp reviews). Additionally, users of the unlimited
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vocabulary may need support in understanding why their query is not returning results

they are expecting, and how they might revise their query to more effectively bridge to

the relevant context-features.

Some users used the prompts to reflect and create generalized concept variables, but

did not aim to expand their foraging efforts using these generalized concepts. Rather, 2

of the 7 participants who activated the reflect and expand prompts created a generalized

concept variable that unified context-features that they had already added to construction

workspace. For example, P9 reflected on why ‘szechuan’ was appropriate for ‘situations to

grab food on a cold day’, then created the concept variable ‘spicy foods’, and finally used

a logical ‘or’ operator to unify existing features like ‘szechuan’, ‘japacurry’, and ‘thai’.

We sought to understand when and why users activate the reflection prompt during

their construction process. Some participants used the reflection prompts during moments

when they themselves felt stuck. Participants often felt stuck when they could not find

additional place context features after trying several search queries. For example, as P7

was trying to express the situation “food for a cold day”, they felt stuck and fixated:

“my mind keeps going to snow days, and from the standpoint of that situation, I think

I got [all the context-features] out of that. So I think I should use a reflection prompt.”

Others participants understood the reflection prompts as a primary way to create concept

variables, and used the reflect button to create concepts that unified existing context-

features: “Once I equated the blue question mark as a way to create [a concept] that

linked [context-features] together with a logical expression, I developed that association...

and used it when I wanted to create a general category for the features I had added”

(P13). Overall, authors initiated the prompts for reflecting and expanding their concepts
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Figure 3.10. Examples of Affinder’s Simulate and Repair Tools helped users
simulate their concept expression, identify real-world cases that highlight
misconceptions and raise issues in precision, and repair their concept ex-
pressions.

during transition points in their process when they felt they had stopped on their current

task to forage for context-features. In this way, its usage aligns with how Affinders was

designed to allow authors to move flexibly between foraging for context-feature matching

concepts (top-down) and fleshing out concepts that could link features (bottom-up) when

issues or decisions arise during the construction process.

3.7.3. Results for Simulate and Repair Tools

Affinder’s simulate and repair capabilities helped participants identify issues with how

their concept expressions operated in real-world locations, and refine concept expressions

to be more accurate. We present some examples from our user study where participants

used simulation to find issues in real-world cases and refine concept expression to resolve

issues; see Figure 3.10. Participants updated their concepts when they saw items from
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simulation different from their original mental image, helping enrich their understanding

of the nuances of how context-features actually apply to real-world cases. As an example

of this process (see Row 1 in Figure 3.10), P14 was originally thinking of ‘baseball fields’

as a ‘place for throwing a frisbee’, but recognized through simulation that some baseball

fields are categorized as ‘stadiums and arenas’, which would make it harder to access the

grassy outfield. Next, P14 used the repair shop to update their concept expression for

‘open space with grass’ to include baseball fields that are not also stadiums and arenas.

In another example (see Row 2 in Figure 3.10), P3’s original construction expressed

‘big open space’ as parks or beaches. Through simulation, they realized that some places,

like a Conservatory or Lily Pool, are meant for formal events and activities and thus would

make for an inappropriate location to throw a frisbee. Next, P3 used the Repair Shop’s

Issue List to notice that the Conservatory was tagged as a ‘garden’ and ‘park’, while

the Lily Pool was tagged as a ‘venue’ and ‘park’. To resolve these issues, the designer

updated their construction to express ‘big open space’ as parks or beaches that are not

also gardens or venues.

We were interested in how usage differed between simulate and repair capabilities in

the full version of Affinder versus the feature for viewing example locations for a single

place context-feature. Many participants simulated concept expressions once they had

completed their representation for a concept variable. For example, P12 used the simulate

feature composing together context-features for a ‘warm foods enjoyed indoors’ concept;

they said: “when I simulate my concept I am trying to find [location] options that don’t

fit. But I’m looking and there’s really nothing that stands out.” When designers did find

location options that did not match their concept, they would label these issue locations
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and proceed to the repair shop to refine the concept expressions to resolve the issues.

In this way, the tools for simulating an entire representation helped users to complete

a representation of a concept variable, simulate to see if any issues arose for any of the

multiple context-features, and resolve any of these issues as they arose.

In contrast, a majority of participants used view example locations to understand

a specific context-feature they were uncertain about. For instance, P11 thought the

context-feature ‘active’ might be relevant for tossing a frisbee, but did not know what this

context-feature meant based on its name; viewing example places helped them understand

that ‘active‘ contained many indoor gym and activity centers that were irrelevant for the

‘spacious and nature’ concept they were trying to express. In another case, P14 chose

to view example places of ‘bbq’ because they thought that it would apply to locations

where one can use a grill outside to barbecue, which is inappropriate for ‘good situations

to grab food on a cold day’. Instead, the examples were barbeque restaurants, which they

felt matched the situation they were expressing. In general, viewing example locations

supported a designer’s while they foraged for features, helping them understand whether

any individual feature they felt uncertain should be included in the expression.

However, view example locations can only identify misconceptions for context-features

a participant chooses to inspect. For example, P11 said: “I didn’t need to view example

places for ‘campgrounds’ and ‘baseballfields’ because I already know what those types of

places are.” This suggests that if participants feel certain about the context-features, they

may not choose to view example places for those features. However, this same participant

later simulated the entire concept expression, and found nuances in how a context-feature

belonging to the expression applies, such as how ‘campgrounds’ that support ‘rafting’
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would not apply to their concept because such locations would have more rivers instead of

open grassy areas required for tossing a frisbee. This suggests that simulating and refining

a concept expression after they have completed it serves a role in surfacing inaccuracies

in how a context-feature detects real-world places, without designers having to explicitly

look for them.

3.8. Discussion

Having demonstrated how an Expression Interface Layer can help authors of context-

aware experiences express their concepts of a situation to machines, we first revisit the

core ideas behind an Expression Interface Layer and discuss how it support people’s abil-

ity to bridge the semantic gap between their overarching idea and a machine’s lower-level

constructs. Then, we envision the role of Expression Interface Layers for developing in-

telligent, context-aware applications that can facilitate human activities and experiences.

3.8.1. Enable the Expression Interface Layer between Human Concepts and

Machine Representations

In this work, we uncovered a set of bridging challenges that arise when designers of

context-aware applications express conceptually rich situations that are several layers of

abstraction removed from the underlying machine features. Accounting for this, we de-

veloped the Expression Interface Layer to include a set of cognitive bridging tools that

support people’s cognition in the process of translating from their high-level concepts to

the machine’s available constructs. Our approach is distinguished from conventional in-

terfaces for programming an intelligent, context-aware system, as an Expression Interface
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Layer explicitly supports human cognition when interfacing with context-features. The

Expression Interface Layer implemented into Affinder supports two interconnected cog-

nitive processes. First, Affinder helps designers define a more expansive set of concepts

for how a situation affords engaging in a human activity or experience. Second, Affinder

helps designers find relevant and accurate links between their intermediate concepts of a

situation and the features that a context-aware AI system can understand and detect.

3.8.1.1. Fleshing out and Expanding Human Concepts. We found that expanding

one’s conceptual notions was important for helping designers explore the conceptual space

and overcome challenges with underscoped concept expressions. Designers who used the

reflect and expand prompts stretched their concepts of a situation by reflecting on why a

context-feature they added was appropriate for the situation they were trying to express;

this process of using the prompts inspired new searches, ultimately helping with overcom-

ing underscoping of concepts. Additionally, designers who used the unlimited vocabulary

search tool encountered context-features that shifted their notions of the situation they

were trying to express; these updates led to expanding their search queries for additional

context-features.

The core ideas behind these two techniques for conceptual stretch have parallels to

existing research tools for conceptual ideation and overcoming design fixation. First, the

cognitive bridging tool for reflecting and expanding on concepts overcomes fixation on

early ideas by scaffolding designers to re-represent their initial ideas at a higher-level of

abstraction, to help designers remember other contexts that might also apply. This core

idea adapts methods for re-representing general linguistic terms to increase the chances

that people recall additional ideas from other parts of the conceptual space [98]. This
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literature uses these methods to help product designers remember useful analogs, i.e.,

solutions that can be adapted from other domains to solve their current design problem.

In contrast, we use it to support context-aware application designers to re-represent their

human concept of a situation at different levels of abstraction, so that they can find

multiple ways of expressing it using context-features.

Second, the Expression Interface Layer’s tools for searching for relevant context-

features led to conceptual stretching in several cases by helping with the discovery of

place contexts that were conceptually different from their initial concepts. Taking this

finding more broadly, designers encountered machine constructs while foraging for an

initial intermediate concept that expanded their concepts of the overarching goal they

were expressing. Within HCI, several computational ideation tools have also supported

the search and discovery of example ideas for the purposes of inspiring and influencing

a designer’s concepts [124, 125, 133]. Many of these tools for supporting conceptual

stretch have been isolated to the concept-ideation phases of the design process, where

designers are sketching a description or image of a product design idea. With Expression

Interface Layers, searching for conceptually-inspirational example items is interconnected

with other stages of the design process like finding implementable forms for concepts—as

the unlimited vocabulary search tool can serve the dual-purposes of stretching a designer’s

concepts, and helping them find matching context-features for an existing concept.

Supporting cognitive processes like conceptual stretching will be important for other

design or creative processes in which ideation and implementation are interconnected

processes. One such creative process is in the field of human-AI co-creation with generative

models, where users must express their creative concepts through a collaboration with an
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AI capable of generating content. Within the domain of music co-creation, composers

must flesh out their concepts for how to achieve a creative goal (e.g,. expressing the

emotions of sad and stuck in the music), while also strategizing on how to implement

their concepts through using the available controls to steer the AI to generate music that

expresses their intent [102].

Studies of human-AI music co-creation have observed cases where a human creator

will change their own concepts of how to express a human emotion through music, based

on interacting with music alternatives generated by the AI [101]. This finding represents

a case where the exploration of implementable solutions can inspire refinement of human

concepts. In addition to example-driven conceptual shifts, such tools can encourage re-

flection and expansion of concepts through re-representing concepts at different levels of

abstraction.

3.8.1.2. Linking Human Concepts and Implementable Machine Representa-

tions. In addition to coming up with concepts for solutions, an Expression Interface

Layer also supports finding an implementable form–in that it helps designers translate

their concepts into machine representations using detectable context-features. The final

output is a piece of code that uses detectable context-features as input, and can be used

by an intelligent, context-aware agent to identify the situation across distributed contexts.

The problem an Expression Interface Layer solves makes it distinguished from conceptual

ideation tools for this reason. The Expression Interface Layer effectively supports this

translation process by providing (1) a rich vocabulary in which authors can query the

available set of machine features, and (2) tools for checking how a machine’s features may

or may not operate on realistic cases as a designer intended.
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The Expression Interface Layer’s core ideas have parallels with interactive machine

learning paradigms, such as active learning and machine teaching. In this setup, a human

evaluates and refines a machine representation, such as machine classification model, by

testing it on new and existing cases and changing the machine’s representations—either

indirectly via providing labels to a machine learner [5], or more directly by specifying

or removing features in the representation [20]—to improve the machine’s ability to ac-

curately identify the desired concept. Most of this work typically relies on humans to

provide labels of a concept so that a learning algorithm can infer which machine features

might be relevant to include or to put greater weight on. The Expression Interface Layer

takes a different approach, allowing a human’s concepts, externalized through natural

language, to be used as queries for discovering which machine features could be useful.

We argue that this is an effective and complementary approach by letting humans find

useful machine representations through using a human’s richer notions of the concept.

This approach should be useful when the machine features are too numerous to browse

through, but do have semantically-meaningful metadata that can be used for querying.

Bridging problems can manifest in other domains where humans must express their

rich concepts into implementable machine-representations. As we have discussed, bridging

problems are a marriage of the problems of conceptual ideation and finding implementable

machine representations for concepts. As such, tools like Affinder which overcome bridg-

ing challenges need to embrace ideas from both literatures on design concept ideation

and interactive machine teaching. We argue that the next generation of expression tools

will closely support the processes of fleshing out concepts and linking to machine repre-

sentations. There is a double loop between humans refining their mental concepts, and
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refining the machine representations too. In this way, construction processes, like the one

Affinder aims to support, help to create expressions that are more human, while also more

detectable.

3.8.2. Imbue machines with an understanding of human situations and the

experiences and activities they afford

Two decades ago, Abowd and Mynatt envisioned a near future in which computing tech-

nologies would augment and benefit our everyday lives. Everyday computing would sup-

port a mode of continuous interaction where computing technologies were no longer just

a localized tool, but a constant companion that runs in the background, and could act

opportunistically to promote the informal and unstructured activities of our everyday

lives, from orchestrating tasks, to communicating with family and friends [2]. At the

same time, researchers began prototyping the types of context-aware applications to step

towards this vision, largely enabled by technical advances in sensors and algorithms for

inferring aspects of human context, as well as frameworks and toolkits that made it easier

to write applications using sensors and component detectors [35]. Yet amidst the tech-

nical opportunities afforded by such advances, it became apparent that the importance

of context-aware computing extended beyond the contextual factors that machines can

detect (e.g., spatial location, user identity, proximity of people and devices). Equally

important was considering how these contextual factors contribute to the meaningfulness

of humans acting and relating in situations [42].

In some ways, these challenges still exist within the current landscape of technolo-

gies. The technologies we have today for inferring context—including the variety of
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commercially-available physical and virtual sensors (e.g., cameras, smart home devices,

location-based metadata, social media and application usage) and the machine learning

and algorithms for processing this sensor data—are starting to give applications a richer

understanding of people’s everyday worlds. Yet, to really leverage these component de-

tectors to create applications that have an awareness of our human ways of acting and

relating in situations, application designers ultimately need to bridge between their human

concepts of a situation and the machine’s available detectors. Thus, it becomes ever more

important to develop an Expression Interface Layer that helps individuals in representing

overarching human ideas with the available component detectors.

In the near future, as emerging technologies like augmented reality (AR) and virtual

reality (VR) will likely take an increasing role in mediating our social interactions and

personal activities within everyday contexts [67], a richer understanding of our human

situations in these environments will be important for ensuring these technologies can

be aware of and facilitate the experiences users want to have. Devices for AR, such

as AR glasses and mixed reality headsets, will have access to the familiar set of context-

features based on location, activity, and time that current mobile context-aware platforms

provide—as well as additional context-features such as object-classes recognized through

computer vision [86]. Despite the increased number of fine-grained context-features that

AI systems can infer, designers must figure out how to best articulate one’s concepts

for situations with the detectable features. Thus, an Expression Interface Layers can

empower designers to imbue these applications with a deeper understanding of these

human situations and the activities afforded by them.
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We anticipate that tools for expressing the human ways of relating and acting in

situations will be important for facilitating user social experiences and activities occurring

in VR as well. Collaborative virtual environments should have a sense of place, where

there are social norms and understandings of what experiences or activities are appropriate

in these environments [61, 43]; thus, systems that facilitate interactions in these virtual

environments should have an understanding of human experiences and activities that can

take place in these situations too. While some virtual places may borrow the social norms

from the real-world physical places they are modeled after (e.g., a VR bar or cafe), it

will be important that application designers have the tools to express their concepts of

how virtual situations may differ from their physical situation counterparts, and what

experiences and activities in virtual reality are afforded and appropriate in them.

3.9. Limitations and Areas for Future Work

3.9.1. Extending Beyond Location-based Context Features

The Expression Interface Layer built into Affinder supported designers in encoding con-

cepts of situations in terms of location-based contexts, such as place venues that one might

encounter while being mobile across one’s day. Since designers must express their ideas

of situations in terms of place categories, their expressions are more useful for identifying

situations that could occur in public venues (e.g., parks, types of restaurants) but cur-

rently less useful for detecting situational contexts that occur within the home or office

as detected by indoor sensors. To expand the set of detectable contexts, future devel-

opments of Affinder could include additional base context-features beyond Yelp place

categories. When extending this context-set, it would be important to consider whether
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it is sufficient to create another toolbar list that a user can browse through, or whether

techniques like the unlimited vocabulary search would be needed to help users discover

context-features. For example, for context-features describing different areas of a home

(e.g., dining room, kitchen, bathroom, garage, backyard), it may be sufficient to list them

in Affinder’s toolbar for users to browse through.

3.9.1.1. From Designer-driven to End-user-driven Authoring of Context-Aware

Experiences. We developed Human-AI Interface Layers to aid the communication of

ideas for context-aware experiences to AI systems, and focused on helping application

designers who were fostering contextual activities among diverse end-users. Nonetheless,

issues can arise when an application designer’s concept of situations is not commonly

shared with the end-user who will encounter these situations, perhaps due to differences

in personal preferences or cultural understanding. For example, end-users may have their

own personal interpretation of a concept for a situation that differs from the application

designer’s concept of it (e.g., an end user might prefer soupy foods over spicy foods for

“food good for a cold day”). If a context-aware application uses a concept expression that

does not align with end-users’ concepts of the situation, the app will try to facilitate the

activity in situations that some end-users will not agree with.

Therefore, a promising direction for future work is to develop Expression Interface

Layers that involve multiple authors in the construction and customization of how con-

cept expressions operate, in order to be accountable to these diverse end-users’ concepts

of a situation. Pursuing such a direction would build upon foundational work on intelli-

gibility, accountability, and control for end-user interaction with context-aware applica-

tions [12, 37]. Affinder’s concept expressions—logical predicates which are composed of
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semantically-meaningful intermediate concepts and context-features—are in an intelligi-

ble representation that makes them good candidates for supporting this desired control

and customization by other authors.

An end-user driven authoring paradigm prompts the question: if end-users start au-

thoring context-aware experiences tailored for themselves, how would this impact how

they express their overarching ideas of experiences into machine representations that AI

agents can computationally act upon? Our answer to that question is as follows: Whether

designers or end-users drive the creation of context-aware experiences, the bridging prob-

lem is what the human will have to face. Similar tools or techniques would be necessary

to flesh out concepts, gather pertinent contextual features, and pinpoint misconceptions

about how machine constructs operate.

One point of difference is the extent to which the person must enumerate the various

ways an overarching idea of a situation could be realized. Whereas designers strive to cre-

ate experiences that are adaptable across various contexts and cater to a diverse user base,

end-users can author experiences designed with specific friends in mind, often situated

within a limited geographic scope. For instance, an end-user describing the experience of

’warm comfort foods on a cold day’ might only need to include warm comfort foods that

align with regional tastes, personal tastes, or those of their friends.

Furthermore, the advent of end-user creation could open the possibilities to a para-

digm of collaborative authoring among a community of end-users. Each individual end-

user would have the opportunity to express their personal interpretation of the shared

experience, such as ”warm food on a cold day.” This approach could lead to the reuse

and adaptation of concept expressions conceived by other community members for the
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same experience. Leveraging this collective effort, cognitive bridging tools could play an

integral role in facilitating such collaboration. For instance, additional techniques inspired

by analogical design principles, which involve re-representing concepts to overcome cog-

nitive fixation, could be applied to counteract potential fixation issues when extending

collaborators’ concept expressions during the process of individual authoring.

Thus, while the extent and specific techniques might differ, the fundamental cognitive

processes underlying the translation of a high-level idea for experiences to the detectable

context features represent a unifying thread. To effectively formulate human ideas and

translate them into the machine’s constructs, both designers and end-users will need au-

thoring environments that include Expression Interface Layers and the cognitive bridging

tools they offer.

3.10. Conclusion

In this chapter, we examined a kind of challenge when the user’s overarching idea they

are communicating to an AI system is several levels of abstraction removed from the AI

system’s operable constructs. Our investigation was based in the domain of programming

context-aware applications: we aimed to empower designers of a context-aware experience

to more easily express their ideas of a conceptually-rich human situation and the inter-

actions they afford to machines, so that the applications can be aware and responsive to

such situations across distributed contexts.

To address this, we contribute an Expression Interface Layer that provides a de-

signer with cognitive bridging tools that address challenges that arise when forming one’s

high-level ideas and finding relevant and precisely-matching machine constructs for one’s
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concepts. We built an Expression Interface Layer into Affinder, a visual programming

environment for expressing concepts of situations using location context detectors that

intelligent, context-aware agents can computationally act upon. Affinder’s technical con-

tribution includes 3 core features designed to overcome challenges when constructing

concept expressions: (1) an unlimited vocabulary search for discovering features they may

have forgotten; (2) prompts for reflecting and expanding their concepts used for organizing

and foraging for features; and (3) simulation and repair tools for identifying and resolving

issues with the precision of concept expressions on real use-cases. In our studies, we show

that these features can (1) mitigate underscoped expressions by helping designers discover

context-features relevant to their concepts, (2) stretch people’s concepts for what aspects

they consider to be important for enabling interactions in these situations, and (3) uncover

and resolve mismatches in how a creator expected their concept expression to operates vs.

how it actually executes across real-world, distributed contexts. Our work with Affinder

and Expression Interface Layers represents an exciting direction for the development of

intelligent and context-aware applications. Complementing the predominant paradigm of

developing a richer set of component detectors, our research explicitly focused on advanc-

ing the capabilities of humans to bridge between their high-level ideas and the lower-level

machine representations.

Our design of the Expression Interface Layer in Affinder provides numerous techniques

to support effective cognition processes as designers bridge between their concepts and

the machine representations. In future work, we envision that AI techniques like semantic

embeddings and knowledge graphs could play a larger role in supporting designers during

the construction process. As one example, using language embeddings [107] could enable
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ways to recommend concepts and vocabulary that would be better aligned with what

humans actually want (e.g., if the term ‘spacious’ is returning undesirable place contexts

that are indoors, we might add the term ‘outdoors’ to the embedding to direct the search).

In another direction, commonsense knowledge graphs [14] could help users traverse a

graph of related concepts to explore and discover new concepts.
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CHAPTER 4

An Interface Layer for Recognizing and Stating Implicit

Expectations for Execution

Even when an individual has expressed instructions to an AI agent to carry out, agents

can take action and make decisions that disappoint the individual when actually carried

out. This occurs because a person may forget to communicate their implicit expectations

and an automated system can fail to reveal constraints it might face that would have

otherwise prompted individuals to clarify all that they expect when delegating personal

tasks to an AI agent.

To resolve this, I introduce in this chapter an Execution Interface Layer for recognizing

execution constraints and stating implicit expectations for how to adjust to these con-

straints. Using the domain of opportunistic interdependent experiences as an example, I

advance three techniques illustrating how an Execution Interface Layer can help designers

communicate to intelligent context-aware agents their expectations for how to mitigate

breakdowns in social norms when facilitating socially interdependent experiences. In one

technique, this Execution Interface Layer can use computational models to simulate ex-

ecution to help an individual recognize potential breakdowns before they occur. Made

aware of the potential breakdowns due to constraints, the individual is supported in re-

formulating their instructions, which would mitigate these breakdowns. In the other two
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techniques, the Execution Interface Layer empowers individuals to state their expectations

via a new mechanism, allowing AI systems to adapt decisions when facing constraints to

satisfy an individual’s expectations.

All together, the development and evaluation of these three techniques demonstrate

how an Execution Interface Layer can mitigate disappointing breakdowns by enabling

individuals to communicate about execution constraints and implicit expectations, before

handoff to an automated system.

4.1. Introduction

Despite individuals providing explicit instructions to an AI agent, its actions and

decisions can sometimes disappoint due uncommunicated constraints and expectations.

For example, an automated system can automatically plan an itinerary for a user, but the

itinerary it outputs has packed too many activities in one day which a person may not

have the energy to do [137]. A navigation route planner can suggest directions to walk

and take a bus, but the suggested route isn’t workable because the user walks slower than

the “normal” speed needed to catch the bus on time [6]. These disappointments stem

from individuals possibly overlooking sharing their expectations, and automated systems

not disclosing potential constraints that would have prompted individuals to clarify.

As a focal example, consider a designer of a digitally-mediated social experience, called

an Opportunistic Collective Experience [103], for connecting friends and colleagues who

live across geographic contexts. A designer delegates to an intelligent context-aware agent

the job of identifying moments that arise coincidentally when physically distant people

are in a similar situation or doing a similar activity and structuring shared activities or
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experiences in these moments, that without such intelligent agents, would have otherwise

been missed. Despite designers providing instructions for how many people and in what

situations to coordinate a social interaction, intelligent agents can still fail to successfully

realize these experiences due to uncommunicated implicit expectations. Experiences can

break down if one’s friends and family are not there to reciprocate participation (e.g.,

taking half of a photo that is never completed by others in their family, or raising a glass

with no friend to return the cheer for some time), and incomplete activities and artifacts

can disappoint (e.g., building a photo mosaic that never reveals its shape after fewer

pictures are submitted than expected). The core problem is that context-aware agents can

face constraints when executing these experiences—including the uncertain and limited

availability of people in specific situations to participate. When designers forget to state

how an AI agent should handle cases when there are fewer people available than expected

to complete an experience, these systems will lack the awareness and sensitivity about

user expectations, i.e., mitigating breakdowns in social interactional norms that degrade

the intended social benefits of an opportunistic experience.

To handle execution constraints and implicit expectations, I propose in this chapter an

Execution Interface Layer for recognizing implicit human constraints and expectations,

and communicating them to automated systems so they can adjust their behaviors to

accommodate them. Augmenting the use of an existing context-aware system for coordi-

nating these experiences, it provides (1) constructs for users to state their expectations

regarding interaction norms; (2) tools and mechanisms for reasoning about how implicit

expectations for preserving interactional norms can be affected by the constraints of peo-

ple’s availability to participate; (3) tools and mechanisms that promote flexible strategies
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for reformulating the desired experiences and adapting execution behaviors to accommo-

date those implicit constraints and expectations.

This Human-AI Interface Layer supports the communication of implicit constraints

and expectations in two directions. From the direction of AI to humans, additional AI

models can help people recognize how their implicit expectations could be impacted by

how they’ve currently articulated their desired goals, which can then help them decide

how to reformulate their original goals in light of these implicit constraints and expecta-

tions. For instance, an awareness of whether participants are likely to encounter certain

situations can help a designer reformulate a social experience that won’t work in some

parts of the world by adapting and broadening the set of situations one needs to be in to

be able to participate (e.g., broadening a ‘ramen sharing’ experience that won’t work in

places where ramen is less common to a ‘noodle sharing’ experience). From the direction

of humans to AI systems, people can use intuitive and actionable constructs, powered

by new AI system components, to state their implicit expectations. The new AI system

components are capable of reasoning about changes in implicit constraints—ultimately

allowing the combined AI system to make the decision that best balances explicit goals

and implicit considerations. For example, an awareness of when starting an experience

that requires timely completion across participants is likely to garner sufficient participa-

tion can allow an automated system to decide whether to initiate an opportunistic social

experience that requires timely reciprocity (e.g., whether to start a shared lunchtime ex-

perience that can fail if no one is available to reciprocate earlier participation within a

desired experience time window).
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This Execution Interface Layer addresses problems in respecting implicit interaction

norms for three corresponding types of interdependent, opportunistic experiences:

• Consider a type of opportunistic experience that fosters connection through peo-

ple participating in similar situational contexts, or what we call situational in-

terdependence. In defining an experience’s situational requirements, designers

can fail to realize that other implicit expectations such as ensuring that people

across geographic contexts can easily access the situations for connecting in this

experience. This Execution Interface Layer reconfigures the tools for defining

situational requirements, by providing designers models of people’s availability

to participate to help surface the impact on the implicit norm of inclusive ac-

cess to opportunities and scaffolds for reformulating their explicit goals for the

experience to better respect these implicit norms.

• An opportunistic experience that fosters connection through two people partici-

pating together within a shared time frame, or what we call temporal interdepen-

dence [17], can break interactional norms if the experience is started but others

are not available to join to reciprocate. To prevent this from occurring, this Ex-

ecution Interface Layer adds a new decision-theoretic mechanism that evaluates

when to start an experience based on the expected value of completing it versus

the potential costs (e.g., how long it will take to complete it, if at all); designers

can convey their implicit expectations through a construct for specifying the time

frame in which social reciprocity is valued.

• Finally, the Execution Interface Layer can help designers state their implicit

ideas for how social experiences can still provide social value from people’s unique
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contributions towards a shared goal together (e.g., pictures forming a timelapse of

a sunset) when there are fewer than expected participants available. We introduce

a programming model to encode the value of partial results which enables designers

to state their social value of different partial results of the collective goal as the

experience progresses which the AI agent can then use to prioritize which roles it

coordinates available participants, allowing it to maintain role interdependence.

Through three evaluation studies, we show how the Execution Interface Layer can

empower designers and intelligent agents to communicate about execution constraints

and implicit expectations for three corresponding types of interdependent, opportunistic

experiences. First, we find that the Execution Interface Layer, instantiated in a tool for

defining situational requirements, established an iterative loop between a designer formu-

lating their definition and envisioning the intelligent agent’s execution under simulated

constraints, which helped designers recognize and address breakdowns in experiences be-

ing inaccessible for a geographically-diverse target population. Second, we show that an

Execution Interface Layer can be used to impart automated systems with a sensitivity

to interactional norms of reciprocity—deciding to only initiate experiences when they are

likely to complete in a timely manner. Third, the Execution Interface Layer can be used

to convey implicit ideas on the value of desirable partial results for a social experience,

so that automated systems can generate artifacts from a limited set of contributions that

still reveal the desired shape of a collective artifact a group was co-creating.

Taken together, these results highlight that Execution Interface Layers can mitigate

disappointing breakdowns by communicating about execution constraints and implicit

expectations, before handoff to an automated system.
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4.2. Background

The conceptual foundations of this work draw on ideas in HCI that focus on the

problem of users forgetting to consider implicit constraints when configuring and using

automated systems. Relatedly, this work aims to address practical problems in recognizing

and accommodating the implicit constraint of people’s availability to engage in computer-

mediated social interactions. As such, it also builds on work from the areas of social

computing systems, interruptibility, and crowdsourcing.

4.2.1. Implicit Constraints and Expectations when using Automated Systems

The issue that many expectations or constraints are assumed or missed and therefore not

explicitly stated by the user has been studied in the field of human-computer interaction.

A crowd powered system can automatically plan an itinerary for a user, but the itinerary

it outputs has packed too many activities in one day. A generative AI assistant can

help draft an introductory message, but the draft is too verbose for a receiver to read

over a text message. A navigation route planner can suggest directions to walk and take

a bus, but the route isn’t workable because the user walks slower than the “normal”

speed needed to catch the bus on time. In such systems, a reasonable solution is to

have the “person in charge” (e.g., requester, user, novice creator) evaluate the systems

outputs as they are being created and clarify their expectations accordingly (e.g. add their

missing constraints to the planning mission; communicate their additional expectation for

the generative AI to revise). Contrary to these examples, this chapter focuses on cases

of user handoff to automated systems, where such systems are taking proactive action

without user intervention or oversight. In such cases, it would be too late for users to
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recognize their implicit expectations after the system has already been deployed to make

decisions or take actions. To evaluate the potential actions of these systems, people

need to use simulated scenarios and data to verify and test potential behaviors in order

to surface failures caused by implicit constraints or expectations. Specifically, we study

how designers use automated systems—such as context-aware systems to facilitate social

interactions—and consider the issues with improving the likelihood that these automated

systems can accommodate user’s implicit expectations and constraints when performing

tasks on their behalf. Like previous work has done, we simulate how an automated system

would operate based on data of people’s availability to visit specific categories of location

across multiple cities to highlight any geographic/regional bias in the activities a designer

wants to promote.

In addition to recognizing unstated constraints and expectations, adapting an au-

tomated system’s operation to accommodate these implicit expectations is equally im-

portant. Some systems make it easy to accommodate constraints once they have been

recognized by a user. For example, a system for itinerary planning can conceivably take

into account additional constraints, and a generative system can adapt once a user has

revised their request. In our work, however, accommodating implicit constraints can be

less straightforward because the presence of constraints can imply making tradeoffs with

the original goals.

To enable this general approach, we take inspiration from flexible strategies for achiev-

ing desired computational outcomes despite uncertain and limited computational re-

sources in computer systems operations, such as graceful degradation [105, 65]; flexi-

ble computation [71, 69, 72]; and anytime algorithms [139]. The key idea behind such
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strategies is considering the expected costs and benefits of various ways of realizing a com-

putational goal given resource limitations and uncertainty. For our setting, we achieve

our desired goals for opportunistic interdependent experiences by creating models of

people’s uncertain availability to participate opportunistically, which allows us

to develop designer-facing and automated systems that support reasoning about vari-

ous strategies for achieving the intended interdependence given uncertain but anticipated

availability.

4.2.2. Considerations for People’s Availability in Personal, Social, and Crowd

Computing

Practically, we aim to support technology-mediated social interactions given the implicit

constraint that people may not always be available to participate. However, many social

technologies have not not needed to worry about the negative impacts that participant

constraints, such as people’s availability to participate, can have on the intended social

interactions. Existing work in HCI and social computing has largely side-stepped this

challenge by either (1) making simpler experiences without interdependence; (2) planning

interactions that forgo opportunistic participation; or (3) deploying in large communities

where viral participation is common. First, while removing interdependence between

contributions can reduce issues with coordination [22, 11], this limits the quality of

interactions since positive interdependence in shared activities is important for promoting

social closeness and the feeling of being part of a group [85, 34]. Second, while requiring

commitments on participation can make it easier for the system to coordinate interactions

(e.g., only activating group events after a critical mass has committed to attending [23]),



133

the higher effort required to commit dedicated time means that people don’t always find

opportunities for interacting as frequently as they might otherwise. Finally, targeting

larger online communities can open the possibility to viral participation, such as what

is seen on sites like TikTok [129, 97]. While clever, virality is not a useful method for

coordinating engagement among smaller groups of people, such as friends and families.

Ultimately, by side stepping the challenges coordinating opportunistic interactions when

participation is uncertain, HCI research has largely moved away from supporting this

interaction modality altogether.

Our work largely thinks about how to improve the ways computers understand and

engage people in interactions, despite uncertainty over people’s availability for interaction.

These aims are largely shared by research on models of human interruptibility [49] too,

where previous efforts focused on getting computers to appropriately engage a user given

uncertainty about whether they were available to interact (e.g., give attention to an in-

coming computer notification or communication message). Decision-theoretic approaches

have been used to effectively reason about engaging a single individual through consid-

ering the value of engaging a user and the cost of the interruption [70]. Much like that,

our work takes a decision-theory approach, modeling the uncertainty in availability for an

interaction, the value of satisfying the interdependence we aim to promote, and the costs

of violating interactional norms of the social interaction (e.g., the second person not being

available to reciprocate in a shared experience). Extending beyond modeling whether an

individual is available for an interaction, our work to coordinate social interactions must

model the social interdependence in how multiple people might successfully interact (e.g.,

via sharing a similar experience or constructing a collective artifact together). In this



134

way, we move beyond a focus on an individual’s interruptibility, to consider the relational

values and costs associated with engaging with others and how the uncertainty of further

engagement with others may affect the value of the interaction as a whole.

Our work also focuses on effectively designing the ways people contribute to shared

activities, and coordinating when and for which contributions people make. In this way, it

resembles in part crowdsourcing research on optimizing how to structure and coordinate

contributions to collective efforts, albeit towards the goal of getting tasks completed.

While a large body of early work assumed participants could be recruited on demand,

later work considered how contributions could be sourced opportunistically, or on-the-go,

while people are going about their existing routines and routes [120, 90]. In on-the-

go crowdsourcing, researchers have also, similar to how we do it, advanced techniques

that model the uncertainty in participation, such as whether people will be available in

specific situations (e.g., passing by a task location), and reason about when and who to

engage based on this model [89]. However, a key difference between tasking and social

interactions is that the values are not over the completion of tasks but over the quality

of the interaction. This has implications for needing to reason about how interactional

norms would be violated by a lack of reciprocation, or by disappointing partial results,

which is critical in our setting but largely out of mind in the crowdsourcing setting.

Moreover, this focus on quality of interaction rather than exactly on which contributions

participants must fulfill provides opportunities to apply flexible strategies to adapt what

roles or contributions that we can fulfill with the interactional resources that are available.
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4.2.3. Opportunistic Collective Experiences

We study how creators communicate with intelligent agents about execution constraints

and implicit expectations in the area of facilitating opportunistic, interdependent social

experiences at distance with intelligent context-aware agents. Our previous research on

Opportunistic Collective Experiences (OCEs) [103] demonstrates the potential benefits

of using intelligent context-aware agents to facilitate people’s shared interactions during

coincidental moments that arise in their daily lives, thereby giving friends and family who

are no longer colocated convenient opportunities to connect that would have otherwise

been missed. In contrast to social media feeds which often promote passive consump-

tion which is not associated with social connection outcomes [22], OCEs promote social

interdependence at a distance through surfacing to people coincidences in their similar

situations to foster a sense of shared experience [15] (e.g., grabbing a warm meal on a cold

day together; jumping into the water at the beach), or inviting people to construct a digi-

tal artifact together or to achieve collective goals by making unique contributions through

local situations (e.g., contribute snapshots of the sun setting to enable the creation of a

Sunset Timelapse). Additionally, the opportunistic nature of interaction reduces the bur-

dens of planning or initiating interactions typically required for actively engaging via a call

or direct message. In these ways, a core benefit of opportunistic collective experiences is

that they allow for rich, interdependent social interactions that are possible with planned

interactions but which find ways to work during convenient moments in users’ busy lives.

Designers of OCEs can structure a specific kind of shared experience or activity by

using an domain-specific API to describe the contributions needed for an activity and the

situational requirements for contributing (e.g., to recreate the feeling of a shared meal
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time, the opportunistic experience needs two people to contribute photos when they are

grabbing a meal in their respective cities). The context-aware AI systems can then facil-

itate opportunities to have these experiences for people separated by time and distance,

by monitoring the everyday situation of group members and coordinating participation

in these shared experiences and interdependent activities in appropriate situations.

Despite this promise, deployment studies of OCEs have also highlighted the difficulty

of executing them in practice. This execution challenge is rooted in the opportunistic

nature of people becoming available in situations to fulfill an experience’s interactional

needs, which implies that participation in experiences is uncertain. An experience’s situa-

tional interdependence can break down if others are not in a shared context to reciprocate

participation. For example, [73] designed and deployed OCEs to pairs of acquaintances,

but found that some pairs did not visit similar contexts to reciprocate their participa-

tion while the experience was still fresh. Additionally, [103] found in their deployment

studies with college alumni friends that incomplete artifacts and collective activities can

disappoint (e.g., taking half of a photo that is never completed by others, or a collabo-

rative storybook that does not get past its first few pages). Based on these challenges

observed during deployments, OCEs, therefore, serve as an apt scenario for studying the

interdependence breakdowns in opportunistic participation.

4.3. Interdependence Breakdowns in Opportunistic Participation

In this section, we will discuss breakdowns of interdependent interactions when par-

ticipation occurs opportunistically. Using OCEs [103] as an illustrative scenario, we show
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Figure 4.1. Illustrations of the breakdowns for situational, temporal, and
role interdependence; and solutions for each which flexibly reason about
alternative strategies for achieving the intended interdependence given an-
ticipated availability of interactional resources.

how breakdowns can occur for three forms of interdependence in opportunistic interac-

tions: (1) situational interdependence where the social value comes from people being in

shared contexts; (2) temporal interdependence where their social value comes from people

participating around the same time when the experience is fresh (e.g., meal time within

a couple hours); and (3) role interdependence, where the social value comes from people

making unique contributions to achieve a shared goal together (e.g., pictures forming a

timelapse of a sunset).
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We have observed that in every interdependence breakdown, failure to consider the lim-

ited and uncertain availability of interactional resources (individuals capable of fulfilling

interactional needs) during the structuring and execution of an opportunistic interaction

is likely to result in missed opportunities and incomplete experiences that ultimately harm

social connections and violate interaction norms. In what follows we show three kinds

of interdependence breakdowns that result from a lack of consideration of interactional

resource availability.

4.3.1. Breakdowns in Interactions with Situational Interdependence

One way to structure socially engaging opportunistic experiences is through situational

interdependence, where people across distance participate from shared contexts to pro-

mote a sense of shared experience (e.g., slurping noodles at a ramen shop; stepping into

the waves at the beach). However, one type of breakdown occurs when designers forget

to consider whether people can access the required contexts for participating. As a repre-

sentative example, Figure 4.1 (top left) shows the design of an experience for illustrating

a story together that requires users to take a photo at a train station, even though no

one in the group frequents train stations. This stalls the experience from progressing to

later interactional needs that group members can complete. In previous research studies

deploying OCEs [103, 27, 73], some deployed experiences were hard to access because

their situational needs were narrowly-defined (i.e., a rare contextual overlap such as a

specific kind of food like “bubble tea”), or because of regional differences in access for

various members of a target population (i.e., there are many train stations in Chicago,

few in Los Angeles and Phoenix).
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Designers can unintentionally forget about these implicit constraints and norms be-

cause the user interfaces for designing context-aware experiences [104] lack support for

evaluating how the likely availability of participants across regions impact inclusiveness

and ease of accessing the opportunity. Ultimately, without better tool interfaces for recog-

nizing the impact that additional constraints can have on their implicit norms, designers

will be challenged to create experiences that make the best tradeoff between providing

access to an experience across geographic regions and their desired vision for connecting

across distance via similar situational contexts.

4.3.2. Breakdowns in Interactions with Temporal Interdependence

Another way interdependence can be structured in an OCE is through a temporal in-

terdependence where their social value relies on reciprocated participation coming within

a meaningful time-window (e.g., a meal time encounter within a couple of hours; shar-

ing about weekend adventures occurring over the same weekend). However, automated

systems can initiate experiences with a first participant without considering if future

participants are available to complete the interaction in a timely manner, resulting in

experiences going incomplete or suffering from long delays. Figure 4.1 (middle left) illus-

trates an example of an opportunistic experience that aims to identify an opportunity for

Alice and one of her friends to virtually share a meal together across their respective cities.

However, Alice may have a late lunch while the rest of her friends will have their next

meals much later in the day when the experience is no longer fresh in Alice’s mind. This

would result in breakdowns of interaction norms around social reciprocity (i.e., where Al-

ice is left hanging), similar to how delays in responsiveness in semi-synchronous chats are
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negatively interpreted [8]. From previous studies that have deployed opportunistic expe-

riences [103, 73], users have said that “being left hanging” via an incomplete experience

left them feeling disappointed and less connected.

Such breakdowns in reciprocity occur partly because designers lack the means to state

their implicit expectations for the timeliness of completion to these automated systems.

Moreover, the automated systems for launching an experience do not currently consider

constraints on the interactional resources available to complete, nor have the ability to

adapt their execution decisions to better satisfy the expectations for timely completions.

A further challenge in accommodating the additional expectations for social reciprocity is

that fixed decision policies set by a designer—such as always activating to eagerly promote

a dyadic experience, or never activating for fear of a lack of reciprocity—will always lead

to suboptimal social benefits some of the time. For instance, there might be more people

available for a shared mealtime experience during the peak hours of lunch and dinner but

fewer in the afternoon between these two times; a policy that always starts experiences

will sometimes launch when there are fewer people to reciprocate participation. In sum-

mary, current automated systems for launching experiences lack effective interfaces for

conveying implicit expectations for the social value of timely completions, and mecha-

nisms for reasoning about changing interactional resource constraints and adapting their

decisions to satisfy implicit expectations.

4.3.3. Breakdowns in Interactions with Interdependent Roles or Contributions

The third way interdependence can be structured is through role interdependence, in which

individuals’ contributions must come together in a particular configuration to construct
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a digital artifact or achieve a collective goal. However, automated systems can fail to

account for execution scenarios when there are fewer participants available to fulfill the

expected roles of the collective activity. For example, consider an OCE that promotes in-

terdependent activities through unique contributions to a collective goal, such as creating

a visual artifact constructed from pieces contributed by different members in a group (i.e.,

a Sunset Timelapse made of snapshots at every minute of the hour before sunset time; a

Heart-shaped photo mosaic). Figure 4.1 (bottom left) shows the resulting patterns from

an execution strategy where needs are met whenever they can be first met, which might

complete a partial set of needs, but still fail to reveal the shape of the collective artifact

that the friend group was building towards.

The problem with this approach is that while the system has a notion of what it means

to fully complete an experience, it has no notion of what a good partial result might be.

Without considering ways to achieve a similar interdependent activity with fewer roles

(e.g., how to adapt a story acting activity, originally written for 5 character roles, to work

when only 2 characters are available), automated systems will likely fail to coordinate

people’s opportunistic participation to achieve satisfying artifacts or collective goals.

4.3.4. Summary of Challenges

In this section, we have illustrated three kinds of interdependence breakdowns: situational,

temporal, and role. With each breakdown, we observe that structuring and executing the

opportunistic interaction without accounting for or directly reasoning about the limited

and uncertain interactional resources available is bound to lead to incomplete experiences

and missed opportunities that harm social connections and violate interactional norms. In
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order to realize opportunistic, interdependent activities, then, we will need tools and com-

putational mechanisms for reasoning about interactional resource availability explicitly,

based on which to make decisions about when, if, and how to execute an opportunistic

experience so as to preserve interdependence. This can then enable us to provide designers

with tools to reformulate interaction needs to be more accessible and automated systems

with computational mechanisms to strategize about and achieve timely completions and

satisfying partial results during execution. In the next sections, we illustrate how we use

this approach to recover interdependence for each of the breakdowns we discussed here.

4.4. Execution Interface Layers

To address these challenges, we advance different Execution Interface Layers that

augment the existing interfaces for instructing automated systems with new interfaces

for reasoning about potential constraints faced in execution, recognizing and stating ex-

pectations not originally communicated, plus new computational mechanisms so systems

can adapt their behaviors to account for them. In the domain of coordinating OCEs, the

Execution Interface Layer supports considering the constraints of people’s uncertain or

limited availability to participate, recognizing and stating which types of breakdowns in

interdependence should be avoided, so that opportunistic coordination engines promote

the intended social benefits when executing these experiences. For example, the Execu-

tion Interface Layer can augment authoring tools for designers, so they can recognize how

an experience might be inaccessible across geographic regions and reformulate their expe-

rience definition to mitigate breakdowns in situated interdependence. Furthermore, the

Execution Interface Layer provides designers with constructs to convey the importance
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of an experience completing in a timely manner, and automated systems with decision

mechanisms for adapting whether they start experiences based on whether it’s likely to

lead to a breakdown in timely reciprocity. This approach for adapting execution takes

inspiration from flexible strategies used in computer systems operation (e.g., graceful

degradation; flexible computation; anytime algorithms): in cases when there are limited

resources to achieve a desired computation, it is important to reason about alternative

computation strategies for achieving a goal or maintaining minimal operation, given the

resources that are available. Analogously, we argue that in cases where it is clear that

there are insufficient interactional resources (people in specific situations) to achieve the

desired social interactions, it is important to consider alternative ways of implement-

ing or executing opportunistic interactions to best achieve the interdependence given the

interactional resources that are available.

We demonstrate this approach through tools and computational mechanisms that

can help to address breakdowns in situational, temporal, and role interdependence. They

include (1) a tool for reformulating hard-to-meet needs; (2) a decision-theoretic mechanism

for launching experiences based on the likelihood of a timely completion; and (3) an

anytime execution strategy for coordinating satisfying partial results.

4.4.1. Reformulation of Hard-to-Meet Needs

Satisfying situational interdependence in an opportunistic experience demands that de-

signers consider the potential constraints and breakdowns in executing the experience’s

situational requirements across geographic regions. However, doing so is difficult with
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Figure 4.2. An interactive tool so designers can reformulate an experience’s
situational interdependence to remove reliance on hard-to-meet interac-
tional needs. Its key features include a monitoring tool for checking how
a model of people’s availability changes based on changes to the definition
of the need (A); a resource-aware search tool for finding relevant context-
features that would impact the visitation likelihood (B); a set of reflection
prompts to help a designer distill the core interaction concepts for the ex-
perience (C); and the visual programming workspace for constructing the
concept expression of the need (D).

current tools for defining situational requirements because they provide no means of sim-

ulating realistic execution across regions and identifying these breakdowns beforehand.

Thus, we develop an Execution Interface Layer that reconfigures the tools for defining

situational requirements, by providing designers computational models of people’s avail-

ability to participate to help surface how breakdowns in access might occur across re-

gions; the Execution Interface Layer provides additional scaffolds to help a designer in

the process of reformulating their requirements for the experience to mitigate breakdowns.

This approach can help designers identify access issues early in the design process, and

use designer ingenuity to find alternative conceptions that will allow for more inclusive

experiences that are more readily realizable in practice, based on predictions of what in-

teractional resources will actually be available during execution. For example, Figure 4.1
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(top right) shows that there is only a 20% chance that a user in a group will be at a train

station, suggesting that it is likely that the experience will stall and not progress further

within the specified timeframe. Realizing this issue, the designer can revise the restrictive

need by creating the interaction need “using public transit,” which matches situations

that are more likely to be met.

To instantiate this Human-AI Interface Layer for recognizing and stating implicit ex-

pectations for execution, we develop an interactive tool for reformulating the situational

requirements for an opportunistic experience. The tool provides designers with an aware-

ness of the anticipated availability of resources during the design process; see Figure 4.2. In

this setting, our tool integrates computational models of interactional resource availability

by modeling a target popluation’s availability for accessing defined situations in their daily

routine based on their visitation likelihood. Using these models, we support designers ac-

tively monitoring for the likelihood of an experience completing given its current concept

expression definition (Figure 4.2(A)). When the likelihood is low, the tool helps designers

reformulate the concept expression using a resource-aware search that accounts for incre-

mental changes in interactional resources when adding a context-feature (Figure 4.2(B)).

This helps designers reflect on the accessibility of their opportunistic experience, and find

ways to expand the situational requirements to make it more feasible. The reformulation

tool also presents reflection prompts that ask designers to reflect on the core interactional

requisites for the experience’s situational interdependence, so that they may consider re-

moving reliance on surface features that hinder accessibility and finding alternative ways

of realizing the core actions and qualities of the experience (Figure 4.2(C)). Similar to

how, in the domain of design fixation, finding a functional schema can help to find other



146

relevant mechanisms for achieving the function or purpose [98], we hypothesize that fo-

cusing on aspects of the situation that affords certain actions should help a designer for

opportunistic interactions find useful alternative conceptions for interactional needs that

can still promote the social value of situational interdependence.

4.4.1.1. Modeling. The Execution Interface Layer improves upon the status quo tools

for defining situational requirements by integrating computational models of what in-

teractional resources will likely be available for the current definition of an interaction

need. The model represents interactional resource availability as the probability that a

target population in a region could access the required situations within some number of

days (e.g., the probability that someone from a group of 30 people from Phoenix visits

“train stations” in the next 3 days). To calculate this probability, we can use historical

visitation frequencies to understand how often a target group accesses the context in a

defined interactional need. Since OCEs heavily rely on location context to define the

situational interdependence, our model of interactional resources is estimated by the fre-

quencies of visiting different location categories, trained on a dataset of global checkins

from the Foursquare platform [134]. For the resource-aware monitoring interface, models

of resource availability are computed for the current concept expression across 6 different

geographic regions. For the resource-aware search interface, the incremental change in

resources is computed by comparing the resource-availability increase that would result

from adding the location context-feature into the concept expression.
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4.4.2. Intelligent Activation of a Time-dependent Activity

Mitigating breakdowns of temporal interdependence in opportunistic interactions requires

considering potential constraints in execution—specifically, the uncertainty in people’s

future availability—and the impact on completing an experience. We built an Execution

Interface Layer to reconfigure the automated system’s default behavior of always launching

experiences without future regard to availability to complete them. With this Execution

Interface Layer, designers can communicate their expectations (e.g., experience should be

completed in the next three hours) which automated systems use to adapt their in-the

-moment decisions to satisfy those expectations. We focus on dyadic interactions where,

for example, this strategy could decide to pass on an opportunity to engage the first user

if no one is likely to participate in the near future (leading to long delays or experiences

failing to complete altogether), and later engage another user in the early evening when

reciprocal participation is more likely; see Figure 4.1 (middle right).

Specifically, we develop computational models of an experience’s potential execution

scenarios by modeling the likelihood of another user completing it after (hypothetically)

starting it. These models are used in a decision-theoretic mechanism that controls the

launching of experiences by reasoning about the expected value (and cost) of starting

an experience at the current moment. The decision-theoretic mechanism trades off the

potential positive value of launching and completing the experience in a timely manner

with the negative value of interactional resources not being available soon enough to

complete it. When the expected value is negative, the temporal interdependence is likely

to be violated in execution, and thus the decision-theoretic mechanism will choose to not

launch the experience.
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Our implementation of the decision-theoretic mechanism decides to activate an expe-

rience at a given hour by calculating an expected value of activation, which is the weighted

average value of experience completion at each hour (or a large negative cost if not com-

pleted) weighted by the probability of someone completing the experience in that hour.

Assuming independence between arrivals across time periods and that the value of not

activating an experience is zero, we can formulate the expected value for activating an

experience as follows:

(4.1) E[value of activating] =
N∑
i=1

V (Ci)P (Ci)
i−1∏
j=1

P (Cj)

where V (Ci) is the value (and cost) of completing within i hours after the first partic-

ipant; P (Ci) is the probability that someone completes after i hours;
∏i−1

j=1 P (Cj) is the

joint probability that no one completed in each of the hours before i.

4.4.2.1. Modeling. Designers can convey their expectations for the system, deciding

to launch experiences through a value function that represents the social benefits from

completing an experience in a timely manner and the costs or breakdowns if delayed.

In our implementation, designers can use an intuitive parameter ω to define the desired

time-window in which an experience should complete, which should correspond to their

vision for the experience (e.g., ω = 3 for a three hour time window for a meal time

experience). This parameter is used to define a tanh(ω − t) value function modeling the

value of experience completion by hour; see Figure 4.3. This value function represents the

number of hours the first user can wait and still receive the benefit of social reciprocity,
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Figure 4.3. The desired temporal interdependence of different experiences
can be modeled by the family of value functions V (Ct) = tanh(ω − t).
For example, ω = 3 defines a same-mealtime experience with completions
within a 3-hour time-window while ω = 10 defines a same-day experience.

after which the delay becomes too long to feel satisfying. This is used by the automated

system through its decision-theoretic mechanism.

To model the likelihood of experience completion by hour, we must model people’s

availability to visit specific situations and participate in experiences. For example, in the

case of opportunistic social experiences grounded in physical contexts, people’s likelihood

to visit a situation could be estimated by hourly visitation frequencies for a location

category (e.g., visitation frequencies for restaurants across the hours of a day and days

of the week). People’s likelihood to participate when notified in the situation could

be estimated through a simple probability, or through more complex models that are

conditioned on different factors of personal interruptibility.
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4.4.3. Anytime Execution Strategy by Assigning a Value to Partial Results

In this third technique, we focus on the problem of there being insufficient people during

execution who can fulfill the roles of a collective activity. Satisfying role interdependence

demands that designers communicate their ideas for how to achieve a similar interdepen-

dent activity with fewer roles, so automated systems can prioritize which roles to assign

people, so as to achieve a visible approximation of the goal, or reveal the shape of a

collective artifact.

Building on top of the existing opportunistic coordination systems, I developed an

Execution Interface Layer that allows designers to state their ideas for how a social value

through people’s unique contributions can still be achieved when there are limited partici-

pants available. The Execution Interface Layer adds an additional programming interface

for creators to encode value-functions that describe which interaction needs should be

prioritized over others and what partial results are preferred. With this encoding, an op-

portunistic execution engine can coordinate people to the highest-value interaction needs

that would most effectively show visible progress towards the collective goal, or reveal

the shape of the collective artifacts a group is building towards. For example, Figure 4.1

(bottom right) shows the results from applying an anytime execution strategy that has a

value function over partial results that prefers uniform coverage across the shape of the

artifact (e.g., a sequential interpolation for a Sunset timelapse; filling the key edges of

the heart mosaic). This ensures that the few contributed photos, or partial results, still

resemble the shared artifact that the group is aiming to create.

We demonstrate this anytime execution strategy by modeling a value function in which

uniform coverage across the shape of the artifact is preferred, as is the case for the Sunset
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Anytime Sequential Interpolation

beg inning = 120 // 120 min be f o r e sunset
end = 0 // 0 min be f o r e sunset
shot = 2 // snapshots every 2 min
anytimeSunsetExper ience = {

‘ ‘ needs ’ ’ : c reateSunsetNeeds ( beg , end , shot )
‘ ‘ anyt imeSequent ia l ’ ’ : {
‘ ‘ s ta r t ingBucket s ’ ’ : 3
}
}

Figure 4.4. In a few lines of code, designers can specify in the OCE API
definition [103] that the interactional needs should have a value towards
sequential interpolation, and decides that the starting interpolation should
divide the range of interactional needs into 3 buckets.

Timelapse experience which prefers a sequential interpolation over the range of needs. A

designer of the opportunistic experience can simply define the set of needed contributions

(e.g., photos of the sunset taken at 2-minute intervals for the 2 hours before the sun sets),

and use this pre-defined value function for sequential interpolation across a set of ordered

needs; see Figure 4.4. Based on this specification, the execution engine will treat the list

of needs as sequential, and divide them into B buckets (this parameter can be adjusted,

based on the expected demand); using a node-counting strategy, the anytime strategy

assigns users to buckets that still have not yet received a contribution. Only when all

buckets have received a contribution (i.e., satisfying the anytime interpolation) will the

strategy further divide the sequential needs into 2*B sequential buckets, to then source

additional contributions to create a higher fidelity sequential interpolation.
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4.5. Evaluation

In summary, we argue that Execution Interface Layers can result in more desirable

execution outcomes by helping people (1) consider potential constraints when executing

(2) recognize and state their expectations for how they’d like automated systems to act

and facilitate experiences on their behalf. In this section, we test these claims through

evaluating the efficacy of the Execution Interface Layers in helping designers to realize

their intended opportunistic, interdependent interactions despite automated systems op-

erating in scenarios with uncertainty in participation. We present three evaluations for

the presented Execution Interface Layers for addressing the breakdowns in situational,

temporal, and role interdependence.

4.5.1. Study with Designers using Reformulation Tools

For this first evaluation, we seek to understand how our approach can resolve access issues

in execution while maintaining situational interdependence of the experience. Since many

access issues can be attributed to decisions during authoring, our claim is that having an

interactional resource-aware authoring process will enable designers to more successfully

formulate opportunistic, interdependent experiences. Thus, we conducted an formative

evaluation with designers of opportunistic experiences to understand how the interactive

tools for reformulation help them recognize how current interaction needs are restrictive,

and reformulate the experiences to be more inclusive of what interactional resources are

available.

4.5.1.1. Method. We recruited 5 designers who had prior background in either de-

signing opportunistic collective experiences (N=3) or familiarity with using authoring



153

tools [104] to define criteria for an OCE interaction opportunity using context-features.

During each 60 minute study session, we first briefed designers on the problem of re-

strictive interactions across different cities, and their goals of redesigning experiences to

broaden participation while retaining the core aspects of the interactions.

After going through a tutorial, we asked participants to author two OCEs with situa-

tional interdependence, while being mindful of how their formulations could affect access

to the experience across different cities. The two OCEs were randomly selected from a

pool of four OCEs which were known to be narrowly-defined (e.g., required people to be

at a specific location category like a ramen restaurant) or affected by access issues due to

regional differences (e.g., required people to be at a train station even though there are

few in Los Angeles and Phoenix). The version of the interactive tool allowed designers

to monitor anticipated availability of people across different cities in the United States:

Los Angeles, Phoenix, Chicago, Memphis, El Paso, Portland. We included these cities

because they reflect variations in geography, population size, and urban-ness, all of which

had the potential to surface various access issues.

In the study, we aimed to observe whether designers could resolve access issues by

reformulating opportunistic experiences to be more inclusive, while also retaining qualities

that promote interdependence through shared situations or activities. We hypothesized

that the resource-aware tools helped designers (a) recognize access issues; (b) reflect upon

core aspects of the situational interdependence they wanted to maintain for the experience;

and (c) expand sets of contexts that are more inclusive to the target population. Users

were instructed to think-aloud as they used the authoring tool. Following the study,

users completed a post-study survey that asked them to describe why the interaction was
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restrictive, how they reformulated the experience, and list any location categories they

added which they were not confident or clear how the interaction could happen in that

context. In an interview, we also asked about the parts of their process they found most

effective, how the tools were helpful in their process, and what if anything was challenging

when doing reformulations.

4.5.1.2. Results. Using the tools that promote resource-awareness during the construc-

tion process, designers could reformulate interactional needs that were more accessible

across regions. An example reformulation for “dipping toes in the ocean (at the beach)”

became stepping into something barefoot, such as water (found at beaches, lakes, mari-

nas, or waterparks), sand (found at parks or playgrounds), or muddy nature (found at

farms, hiking, and campgrounds). Through reformulating this interactional need, P2 in-

creased participation likelihood in cities like Chicago from 2.3% to 12.5%, and expanded

access to landlocked cities like Phoenix from 0.1% to 6.3%. An example reformulation

for “traveling with luggage on platform 9 and 3/4s (at train stations)” became traveling

with luggage (which happens at airports, buses, taxis), boarding a train (at train stations

or trains), or moving around with a cart (grocery). By designing this reformulated ex-

perience, P1 addressed access issues for cities like El Paso where the original experience

of train stations was unlikely to occur (from 0.7% to 36%). Had the original experiences

been deployed to target populations across these cities, fewer people would have been

able to engage in these experiences with situational interdependence. Through identify-

ing these access issues early in the design process, designers can mitigate potential access

issues and breakdowns by defining alternative formulations that are more accessible to

the target population.
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Designers used the models of execution constraints to recognize potential breakdowns,

which led them to adjust the situational requirements to account for these problems.

Specifically, when designers recognized that the social experience’s situational require-

ments were hard to meet, they began searching for contexts to add to their definition

for which the predicted availability of resources would increase. For example, for the

ramen slurping experience that was narrowly-defined to only “ramen” restaurants, P5

used the resource-aware search to find other location contexts that served the same food

of “ramen” and afforded the same action of “slurp.” This helped them discover addi-

tional contexts such as places tagged as “noodles”, “soup”, “asian fusion”, and “chinese”.

P5 used resource-aware search to determine which location contexts would most increase

access to the opportunistic experience across the various cities. When trying to find lo-

cation categories with noodles, P5 noticed that some location categories like “korean”

restaurants would add negligible participation in cities like Phoenix, whereas adding “chi-

nese” restaurants would help to increase participation probability across all cities. In this

way, awareness of resource distribution across subpopulations, provided by our models,

aided designers in finding alternative formulations for addressing regional differences in

interactional availability.

The reflection prompts and process of construction helped designers to consider al-

ternative formulations to achieve the situational interdependence. While some designers

found the reflection questions for distilling the core interaction concepts helpful in their

process (e.g., P5 said that these questions “helps me be able to come up with more search

terms, and see how relevant each would be given how I was imagining the interaction”),

others were able to brainstorm relevant interaction concepts throughout the process of
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construction without the help of the prompts (e.g., P3 expanded their idea of slurping by

naturally thinking of related actions and other kinds of foods that involve slurping).

Additionally, the reflection prompts aided designers to come up with ingenious inter-

action concepts as alternative ways to promote situational interdependence. Designers

felt that the process of distilling and reimagining the interaction questions helped them

generate their alternative interaction concepts. P1 commented that “the questions that

asked about actions, settings that support them, and then thinking of related actions and

settings created this back and forth in which you can kind of uncover relationships that

you didn’t really think of before.” P2 used the reimagine the interaction questions to

reformulate “dipping toes into the ocean” into an experience more about “taking that

first step into a new environment or experience”; for the same experience, P4 came up

with a concept for an experience which united people who were “metaphorically getting

their feet wet, or trying out something new”, which they associated with ideas like trying

an extreme sport. In either case, designer knowledge of the interaction requirements,

such as its core actions and qualities of the situation, helps to uncover ingenious ways

to expand the interaction need but that appropriately maintains the intended situational

interdependence.

From there, the resource-aware search tool was then helpful for designers to test which

of their interaction concepts would reduce the dependence on unavailable interactional

resources, thereby increasing predicted access and participation. For example, P1 was

trying to express an idea for stepping into sand, and “originally thought desert was a

legitimate place that would expand for people in Arizona.” But after seeing in the search

tool that “parks may be more common,” P1 decided that they “should really press on with
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this sandbox idea.” P1 said, “the [resource-aware] search tool helped me think about the

experiences that would realistically happen more often, and what I should actually spend

most of my time making experiences for.” In this way, integrating models of interactional

resource availability into the tools helped designers reason about which of their alternative

formulations for promoting similar situational interdependence was more realizable in

practice.

4.5.2. Simulation Study of Interface Layer to Preserve Temporal Interdepen-

dence in Execution

To show how we can maintain temporal interdependence when running social experiences,

we conduct simulation experiments to compare our “intelligent activation” strategy to an

“always activate” baseline strategy that starts opportunistic experiences without regard

to the future availability of interactional resources to complete them. Our experiments

show the benefit of approaches that reason about and strategize around the uncertain

availability of interactional resources when initiating an interaction, and also provide

intuition about how our intelligent activation strategy makes decisions under changing

levels of interactional resource availability and the costs of delayed completions.

4.5.2.1. Methods and Models. We conduct our experiments in the context of facili-

tating meal time experiences between two people, for which a designer wants to promote

temporal interdependence by having the experience complete around a meal time. We

consider two desired experiences: one in which the experience should complete within the

same mealtime, and one in which the experience can be completed anytime during the

same day.
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To model the likelihood of people being available to complete an experience (i.e., the

availability of interactional resources), we model the joint probability of being at a restau-

rant and the probability of actually participating when in the location. For likelihood of

visiting, we extract hourly visitation data for restaurants from Google Maps [44] that

correspond to the two distributions we use for the experiment: (1) restaurants open for

lunch and early dinner to model a peak during midday distribution; and (2) restaurants

popular for lunch and dinner to model a two meal time peaks distribution. We then vary

the likelihood of actually participating experimentally, as a way of simulating varying

levels of interactional resources.

We model the temporal interdependence that should be achieved through a value func-

tion describing the positive value (benefits) of completing experiences in a timely manner,

and the negative value (costs) of delays or incompletions. We specify a fixed positive value

for completing the experience (fixed at 10), which decays over time and negates if the ex-

perience is not reciprocated within a specified time window. We use the same function

tanh(ω− t) to model this decay for two parameterizations of ω: ω = 3 to represent meal-

time experiences that should finish in the same meal (in a 3 hour window) and ω = 8

for a meal completing anytime across the same day (within 8 hours); see Figure 4.3. The

decision-theoretic mechanism then uses this value function in its computation of expected

value, where a negative expected value indicates temporal interdependence would likely

be violated, and a positive expected value means we can maintain it, and thus should

launch the experience.

Using these models, we conduct three simulation experiments:
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(1) In experiment 1, we study the benefit of Intelligent Activation over the Always

Activate baseline at varying levels of interactional resource availability by vary-

ing the likelihood that a person participates in a situation from 10% to 100%.

We model a uniform distribution of arrivals over all hours of the day for sim-

plicity, and a value function that encodes a same meal-time experience (a 3 hour

acceptable window).

(2) In experiment 2, we show how experience activation decisions are made given

changes in interactional resource availability throughout a day. We use the peak

during midday distribution of people’s availability, fix the likelihood that users

participate at 30%, and use a value function that encodes a same-day meal ex-

perience (a 8 hour acceptable window).

(3) In experiment 3, we show the effects of the changing costs of delays (i.e., time-

window of acceptable completions ω) on experience activation decisions by com-

paring decisions made with respect to the two value functions we consider (same

meal vs. same day) while using the two meal time peaks distribution of availabil-

ity.

4.5.2.2. Measures and Analysis. Value across our three experiments measures whether

temporal interdependence was achieved in execution. A positive value means that experi-

ences completed within the relevant time-window, and negative value represents the cost

of not completing in a timely manner which is associated with breakdowns in interactional

norms like social reciprocity. To show the benefit of the intelligent activation strategy over

the baseline when the availability of interactional resources changes (experiment 1), we

measure and compare the value achieved for each strategy averaged over many decisions.
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Figure 4.5. As resources become less available, the baseline strategy that
starts experiences indiscriminately without considering the future rapidly
drops in achieved value. At 65% and below, the times it makes costly
decisions outweigh all the times that activating results in a (lucky) comple-
tion. In contrast, the intelligent strategy can be judicious about decisions
as resources become less available, where all the times it decides to activate
lead to positive value. Only at 30% and below does the intelligent achieve
zero-value by deciding to not activate.

To provide intuition about how decisions are made as availability of resources changes

throughout a day (experiment 2), we measure the expected value of activating which is

used by the intelligent strategy, and compare the achieved value for decisions for both

policies. To provide intuition about how decisions are made when costs of delays change

(experiment 3), we investigate a decision at a single moment, plot the value for a potential

completion across the hours of the day, and show how the integration of potential value

across is simply the expected value for activating at this moment.
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4.5.2.3. Results. When initiating experiences, the Intelligent Activation strategy out-

performed the Always Activate strategy regardless of how constrained interactional re-

sources were; see Figure 4.5. At lower levels of interactional resource, Intelligent Ac-

tivation achieves zero-value by never activating experiences since they are unlikely to

complete. Meanwhile, the baseline strategy incurs many costly delays or incompletions

which result in negative value. At the highest level of availability of interactional re-

sources (100% of people participating), both strategies achieve the same positive value

since there is an abundance of people who visit situations and are available to complete

experiences. In short, systems that can reason about when to start social experiences

based on the availability of interactional resources can better maintain the experiences’

temporal interdependence.

As interactional resources vary throughout the day, the Intelligent Activation strategy

only begins experiences when there is enough upcoming resource availability. Figure 4.6

(Row 1) shows as we move into hours past the peak during midday, the model estimates

that the expected value of activating would result in negative value achieved (Row 2) due

to scenarios where costly delays or incompletions are likely (i.e., failing to have temporal

interdependence). As a result, Intelligent Activation does not activate in those hours

whereas the Always Activate strategy does, incurring negative value since someone is

not there to reciprocate the participation in time; see Figure 4.6 (Row 3). In particular,

Intelligent Activation initiated experiences in the morning (10 AM) when there were fewer

interactional resources to start experiences, but more upcoming available in the near future

to complete experiences. In contrast the strategy stops initiating during late lunch (2

PM) even though there is more availability for experiences at that moment because there
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Figure 4.6. The Intelligent Activation strategy can maintain temporal in-
terdependence by adapting its decisions as the future availability of people
changes throughout the day. When the time is before or at the start of the
midday rush (blue region), the Intelligent Activation reasons that expected
value for activating is positive (achieving temporal interdependence), and
thus starts experiences only when they are likely to complete. However,
since there is limited future availability after midday (red region), the in-
telligent strategy decides not to activate since the expected value will be
negative, or that activating will more likely lead to costly delays or incom-
pletions.
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are few resources in the future to complete them. This indicates that reasoning about

future availability–instead of current availability–is what allows the Intelligent Activation

strategy to effectively decide when to activate experiences that are likely to have timely

completions.

When the time window for desired temporal interdependence is tightened (ω = 3 for

meal-time experience), more resources in the smaller window are needed for Intelligent

Activation to begin experiences; see Figure 4.7, left. This matches our intuition about

the decision moment in focus: at the end of lunch time, there are few people who will

likely become available in the acceptable time frame, warranting a decision to not activate

an experience to avoid potentially breaking temporal interdependence. Taken together,

these results show how systems can be designed to preserve a designer’s intended tem-

poral interdependence by determining when to launch experiences based on the future

availability of interactional resources.

4.5.3. Deployment Study of Anytime Execution Strategy

For our third evaluation, we study how automated systems can coordinate to achieve role

interdependence despite uncertainty in the availability of opportunistic participation to

complete a full experience. We deployed two versions of a Sunset Timelapse experience,

one using an anytime execution strategy that values sequentially interpolated results, and

one using a baseline execution strategy that is agnostic to the value of partial results and

will immediately meet any unmet need that can be fulfilled as soon as someone may be

available to fulfill it. We hypothesize that despite insufficient interactional resources to

complete the full experience, the anytime execution strategy will coordinate opportunistic
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Figure 4.7. We consider an intelligent strategy that is making a decision
at hour 13 (after the lunch peak). In the case where costs of delays be-
come negative after 3 hours (same meal experience), the strategy does not
activate since there are less interactional resources available within this 3
hour window to complete in time. In the case where costs of delays be-
come negative after 8 hours (same day experience), the strategy activates
since throughout this 8 hour window there are more interactional resources
available, including people who will become available during dinner time.
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participation to form partial results that have the shape of the intended, shared artifact,

thereby promoting the social benefits from achieving role interdependence.

4.5.3.1. Deployment Prototype. Both versions of the Sunset Timelapse experience

define 60 interactional needs, which represent snapshots to be taken at 2-minute intervals

between 120 minutes before sunset until 2 minutes after the sun sets. The anytime version

implemented an execution strategy which placed a priority on first fulfilling a 3-frame

interpolation across the duration (i.e., 3 buckets), after which it attempts to fulfill a 6-

frame sequential interpolation, and so-on. The baseline version used an execution strategy

that was indifferent to ordering, by sourcing contributions for whichever remaining need

that a participant first becomes available for.

4.5.3.2. Study Setup and Measures. We deployed this sunset experience to partic-

ipants who were alumni members of a college organization and who were interested in

connecting with one another. Similar to previous deployment studies of opportunistic

experiences [103], we chose this college organization population because they are an in-

stance of a larger challenge facing friends and family who are typically living physically

distant but who don’t always find opportunities to actively engage with one another.

We recruited 8 participants in total, which meant that our deployment conditions

represented the limited interactional resource problem since there were a limited number

of people available to fulfill all 60 interactional needs. Participants were distributed across

three different timezones in the United States. We used a within-subjects design, where

the group of participants were given the anytime version of the experience for one week,

and the baseline version the next week. By testing with the same group of participants
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(a) In this Sunset Timelapse Artifact sourced using the Baseline Strategy, the result has the sun
barely setting, with many snapshots taken during the beginning buckets.

(b) In this Sunset Timelapse Artifact sourced using the Anytime Strategy, the results capture
the whole process of the sun setting, where contributions are made more uniformly

Figure 4.8

and assuming that their availability to contribute on a given week stays the same, we try

to control for the availability of interactional resources across deployment conditions.

We triangulate our results across two sources of data. First, we look at the final

artifact to understand whether it shows the sunsetting, which is evidence that a partial

set of interdependent contributions achieve the shape of the desired artifact. Second, we

visualize how needs were fulfilled for each execution strategy across the timelapse range,

to understand if the anytime strategy can more effectively source partial results with

uniform coverage across the timelapse.
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Figure 4.9. Across different stages of partial contributions, we show which
needs were contributed to for the anytime strategy that assigns higher value
to a sequential interpolation (right) versus the baseline strategy that is
indifferent to utility (left). Additionally, the colored rectangles visualize
the intervals in which coverage was successfully achieved (blue) vs. not
achieved (yellow).

4.5.3.3. Results. The anytime execution strategy better captured a timelapse of the sun

fully setting as compared to baseline version; see Figure 4.8b vs. Figure 4.8a. The baseline

strategy had 7 interactional resources available (users who contributed snapshots of the

sunset), while the anytime strategy had 5 available. Despite having more interactional

resources available, the baseline strategy resulted in a view that has the sun barely setting.

A majority of the contributions were made at a similar time point in the beginning when

the sun was high above the horizon, with no contributions that show the sun setting close

to the horizon. In contrast, for the anytime strategy, the produced artifact shows the

whole process of sunsetting, from a high point above through to the finish with the sun

close to the horizon. These results indicate that by being sensitive to the value of partial

results, the anytime strategy can prioritize roles which interdependently reveal the shape
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of the shared goal, even when lacking interactional resources to achieve the full set of

needs.

The anytime strategy can coordinate the limited interactional resources that are avail-

able to approximate the shape of the sunset, because it prioritizes partial results with

uniform coverage over the sequential range of needs. Figure 4.9 visualizes the distribution

of contributions across the sunset needs timeline after each contribution. We see that the

baseline strategy results in clumps of contributions at the early stages of the timeline;

this is because the baseline strategy will assign users to interactional needs that they are

immediately available for (for instance, someone available at all times would still have

been delivered the earliest photo need not yet fulfilled). In contrast, the anytime strategy

results in more uniform coverage because it waits to assign users to contribute to sunset

needs in buckets that are not yet full, resulting in a smooth interpolation after three

photos before it expands to collect other photos to fulfill unmet needs across a larger

number of buckets. This demonstrates that by having a notion of what partial results

are better while the activity has yet to complete, the anytime strategy helped the people

who engaged with it have the satisfaction of seeing their digital artifact actually reveal

its shape (versus not at all in the baseline), and at any stage of participation.

4.5.4. Study Takeaways

4.5.4.1. Preserving Situational Interdependence through Reformulating Hard-

to-Meet Needs. Providing social experience designers with computational models of

people’s availability allowed them to recognize and correct potential issues with users being

unable to access location contexts used for their experiences. Of note is how designers were
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able to exercise their ingenuity to reformulate experiences in ways that automated systems

could not on their own. For instance, designers were able to distill the core interactions

of the experience and consider alternate, more accessible situations that could support

those interactions using a mixture of reflection prompts and tools that showed the change

in participation likelihood. This shows that designers could use the Execution Interface

Layer’s scaffolds to form their tacit ideas for what they really intended in the design of

the shared experience, allowing them refine the experience and requirements to preserve

these ideas while accommodating the need for broader access to the opportunity across

geographic contexts.

4.5.4.2. Meeting Temporal Interdependence through Intelligent Activation.

With the Execution Interface Layer, the opportunistic coordination system gained new

abilities to reason about the anticipated availability of interactional resources and choose

when to initiate experiences based on how likely they are to complete. Regardless of how

constrained interactional resources were, we saw that our Intelligent Activation policy

would only ever initiate experiences when there was enough future availability of interac-

tional resources. Moreover, a key benefit of the Execution Interface Layer was allowing

designers to specify the the temporal interdependence of their experiences (e.g., within

the same meal, or all day) that prior systems without the Execution Interface Layer’s

computational mechanism would have no way to maintain. In other words, an Execu-

tion Interface Layer that augments execution engines with models of future interactional

resource availability allows them to reduce potential incompletions of experiences and

also maintain aspects of temporal interdependence that a designer may want for a social

experience.
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4.5.4.3. Satisfying Role Interdependence by Communicating the Value of Par-

tial Results. Finally, our findings showed that Execution Interface Layers can allow

people to impart systems with an understanding of desired partial results of a social ex-

perience. These systems, in turn, can generate artifacts from people’s contributions that

still resemble the shape and feel of the broader collective goal despite limited interactional

resources. The baseline execution engines, which were unaware of what these partial re-

sults can look like, would solicit contributions without regard to how those contributions

progress the social experience towards the collective goal, resulting in many pictures of

the sun early in the sunset but little to none later on. In contrast, the anytime execution

engine—augmented by a type of Execution Interface Layer—was able to produce an arti-

fact that still resembled a timelapse of a setting sun, even though it had fewer interactional

resources available. In practice, such resource constraints are likely to arise even when

designers have considered ways to make social experiences more accessible. Thus, these

findings show the importance of also developing ways to convey what partial results of a

collective goal may look like to systems so that they can preserve role interdependence

when executing experiences.

4.6. Discussion

Having conducted studies on three types of Execution Interface Layers, we revisit the

key conceptual ideas of how an Execution Interface Layer can augment the usage and

communication with an pre-existing automated system, and discuss how they can gen-

erally support individuals in recognizing and stating implicit expectations to automated

systems.
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4.6.1. Consider How Execution Constraints Impact Implicit Expectations and

Norms

In this chapter, we illustrated three practical breakdowns in interactional norms when exe-

cuting opportunistic, interdependent experiences. Far from being three separate problems,

they could all be understood by the mistake of not considering execution constraints—

such as people’s availability to be in situations to participate in these experiences—and

not stating to automated systems how people’s implicit expectations and norms can be

accommodated. Thus, addressing the practical breakdowns in interdependence required

developing tools and mechanisms provide an awareness of how uncertainty or limitations

in people’s availability to participate—can impact interactional values, which then enabled

designers and automated systems to find alternatives to realizing the experience based on

where and when resources were likely to be available, or that worked with limitations in

resource availability. These tools and mechanisms defined an Execution Interface Layer

built on top of existing AI capabilities for coordinating opportunistic experiences, en-

abling designers and automated systems to communicate about the impact of execution

constraints and the strategies to respect implicit expectations in light of them.

Our techniques employed two ways of recognizing and reasoning about the implicit

human constraint of end-users being available to participate in these opportunistic expe-

riences. The first way explicitly modeled the uncertainty of interactional resources needed

to achieve the intended interdependence. A model of uncertain availability allowed de-

signers to evaluate whether their contextual trigger was too restrictive across geographic

regions. This model also supported them in finding how to adjust their original goals

in light of these implicit constraints via a resource-aware search tool that helped them
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find additional context-detectors that would increase participation likelihood. This gave

them ways to reformulate their experience’s contextual requirements to be more acces-

sible. A model of uncertain availability across hours was used by automated systems to

compute an expected value for activating, allowing them to choose to only activate when

expectations for timely completion would be satisfied. In this way, the computational

models of implicit constraints powered a decision-theoretic mechanism that reconfigured

the ways automated systems could adapt their behaviors moment-to-moment to accom-

modate designer’s stated expectations. Rather than modeling the implicit constraints,

the second way assumes that these constraints prevent the full result from being achieved

as originally intended and proposes anytime execution strategies for achieving satisfying

partial results given these constraints. This Execution Interface Layer provided a simple

construct in the programming API for designers to state their implicit ideas for what

configurations of partial results were more preferred to promote the intended role interde-

pendence. Already, this allowed the automated systems to adjust which roles people are

assigned to, thereby coordinating partial results that worked with constraints of limited

resources while still satisfying the designers expectations for role interdependence.

4.6.2. Responsibility of Humans and Automated Systems for Successful Exe-

cution

To promote the opportunistic experiences a designer has envisioned, they must rely on

automated systems that recognize when people are available for interactional needs and

decide how to execute to coordinate their participation in experiences. However, as we
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illustrate through the breakdowns in interactional norms of these opportunistic, interde-

pendent experiences, accounting for implicit constraints and conveying unstated expec-

tations is critical when handing off to automated systems The Execution Interface Layer

is meant to improve the interface between people’s expectations for social interactions

and the AI system’s execution behaviors when faced with the constraints of end-users’

uncertain availability to be in situations to participate.

Amongst the different techniques offered in this Execution Interface Layer, the de-

cision to accommodate implicit expectations falls under two categories of responsibility:

the decision can be made by AI systems at execution time, or the decision can be made

by designers themselves. When AI systems are entrusted to make decisions for adapt-

ing aspects of the experience or execution, this requires the designer to more explicitly

encode their understanding of interactional value and norms into a representation that

a computational mechanism can use to reason over and act upon. Doing so empowers

designers to configure how their experiences run when deployed given variations in the

constraints, while ultimately giving systems a greater level of autonomy to decide how to

satisfy human expectations. For example, designers could describe their implicit expecta-

tions for timely completion through through parameter ω that determined when the value

of completion is no longer positive, which the decision-theoretic mechanism then uses to

decide when experiences should be launched based on whether that expectation is likely

to be satisfied, as determined by the expected value function. This shows how an Execu-

tion Interface Layer can reconfigure an existing automated system to interpret a human’s

stated expectations and reason about the variations in uncertain constraints, to allow it

to make decisions across different moments that will best satisfy human expectations.
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The second category of responsibility shows when designers must ultimately use their

implicit understanding of expectations to decide what goals or behaviors should be ad-

justed in response to the execution constraints. The tool for reformulating the situational

requirements, and the anytime execution engine for achieving satisfying partial results

are both examples of how designers can convey, prior to deployment, exactly how they

want execution to be changed to achieve a balance between the originally stated expe-

rience and the possibly limited availability of people to participate. For example, the

reformulation tool addresses challenges designers face in knowing how to accommodate

these constraints. It was important to note that systems could not automatically make

these accommodations: while the system, aided by models of resource availability, could

suggest how the stated situational requirements could be changed to be more inclusive,

some of their suggested reformulations could expand the situation so it no longer recreates

a feeling of shared experience through similar situations. More generally, while machines

can suggest ways to adjust to the constraints, people need to be in the loop to reason

about their implicit expectations and goals—like how to promote the essence of their

envisioned experience—that machine’s don’t have an explicit understanding of.

4.7. Conclusion

In conclusion, entrusting AI systems to proactively facilitate human experiences hinges

on recognizing and accommodating implicit human constraints and expectations. Neglect-

ing these factors, as illustrated by context-aware AI systems coordinating opportunistic

social interactions, can lead to disappointing outcomes and undermine social benefits. The

proposed Execution Interface Layer offers a solution by empowering users to articulate
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interaction norms explicitly and by equipping AI systems to adapt behaviors based on

implicit expectations. This Human-AI Interface Layer facilitates two-way communication.

It empowers AI systems to assist users in recognizing how their goals might be affected

by implicit constraints, promoting thoughtful reformulation of experiences. Conversely,

it equips users with intuitive constructs to articulate their implicit expectations, enabling

the AI system to incorporate these considerations into decision-making processes. Ulti-

mately, the success of AI systems in fostering meaningful interactions and experiences

hinges on their ability to adapt and respond to implicit human constraints and expecta-

tions. As we move forward, embracing this approach will pave the way for AI systems to

fulfill their promise as facilitators of enriched human pursuits, enhancing end-users’ lives

through thoughtful and accommodating actions.
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CHAPTER 5

Discussion

In this chapter, we revisit the core contributions of Human-AI Interfaces and their sig-

nificance in addressing challenges in communicating human intentions to AI collaborators

and AI agents; discuss the design principles of Human-AI Interface Layers; and provide

advice on how to conduct research in this area. Furthermore, we discuss the importance

of generalizing and extending Human-AI Interface Layers with the emergence of new AI

capabilities like Large Language Models. Finally, we highlight how Human-AI Interface

Layers are a promising approach to promote human engagement in meaningful pursuits

where craftsmanship, self-expression, and mastery should be preserved.

5.1. Human-AI Interface Layers Revisited

AI capabilities are being infused into systems and user applications that touch many

aspects of human life. The uses of AI and automated systems have expanded, from

common and repetitive tasks to more personalized and custom needs. As such, AI systems

have aimed to be more responsive and adaptable to a user’s or creator’s inputs and needs.

In support of these personalized uses, many AI and automated systems now provide an

interface with some means for users to provide inputs to influence the AI operation or

output—such as the content it produces, the situations it recognizes, or the contributions

it coordinates. Examples from our work include a musical AI generating different music

depending on the starting notes provided, to the context-aware AI agent deciding when
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and for whom to send digital experiences based on the situation the agent has been

instructed to trigger upon.

More and more, tool and application builders are exploring how to use these more in-

teractive AI capabilities to assist with meaningful human endeavors, across the domains

of human creativity and social connection. These domains require awareness and sensi-

tivity to a human’s subjective and personal knowledge which is derived from the user’s

emotions, cultural understanding, and personal experiences. However, many available AI

capabilities are trained upon predefined labels and built on pre-programmed knowledge,

operating in a general-purpose and more objective manner. Critically, they have a limited

understanding of a user’s personal and subjective ideas.

These AI systems need to be imparted with human ideas about emotions, social sit-

uations, or social norms–so they can assist and facilitate a creator’s intent appropriately.

However, a core problem is that some existing AIs, which are supposed to be interactive

and configurable for creators, are instead still challenging to interface with. First, the AI’s

available constructs—the current “language” the AI can receive as input—do not match

the human ideas a creator needs to communicate. Second, these AI interfaces assume in-

dividuals can comprehensively specify their inputs upfront, thus placing the entire burden

on the user to form, evaluate, and clarify their ideas and communication strategies. When

developers build AI-powered tools and applications with user interfaces that mirror these

limited AI interfaces, these problems for communicating ideas and intentions persist.

In this dissertation, I introduce a crucial layer within the stack of an AI-powered

application, called the human-AI interfacing layer. The primary objective is to enhance
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the communication interface between individuals and existing AI capabilities. A Human-

AI Interface Layer can expose intuitive and actionable constructs for adjusting how pre-

existing AIs work to support the more straightforward articulation of ideas. Furthemore, a

Human-AI Interface Layer can augment the AI’s interface to support incremental forming

and refining of meaning, avoiding the failure of expecting comprehensive communication

upfront. Together, Human-AI Interface Layers empower creators and users to make the

most of an AI’s inherent capabilities despite its limited interfaces for understanding human

ideas, thereby assisting individuals in realizing their personal vision for an artifact or

experience.

I have created human-AI interfacing layers for two domains where an understand-

ing and sensitivity to a human’s personal and subjective emotions, ideas, and knowledge

is crucial. The first domain is music composition with generative AI tools. A novice

composer’s interest lies beyond using AI to generate coherent-sounding songs; most im-

portantly, they desire to create a song that captures their creative ideas about how differ-

ent musical elements can evoke their envisioned emotions. A Human-AI Interface Layer

supports their communication of personal ideas to exercise creative control when using

generative AI to co-create a song. The second domain is creating convenient opportunities

to have meaningful social interactions at a distance, enabled by proactive context-aware

AI systems. For example, to effectively foster coincidental moments to share a similar

experience between people across different cities, context-aware systems need knowledge

about situations that would recreate the specific vision of a shared experience a designer

has in mind.
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I have demonstrated how interfacing layers can address three types of interfacing

challenges that arose due to limitations in the default user interfaces for using an AI’s

capability. First, when an AI tool’s user interface only affords indirect influence over

coarse-grained objects, such as fully-completed generated artifacts, people can struggle

to impart their fine-grained and opinionated ideas into an AI’s outputs. As such, I have

developed a Steering Interface Layer that allows people to partition an AI’s outputs into

semantic chunks and constrain what the AI generates based on several semantically-

meaningful dimensions. My studies have found that partitioning the AI’s outputs allowed

people to work with manageable chunks at a time, allowing them to evaluate and intervene

in the AI’s generation. Using the mid-level constructs for requesting how the AI should

generate outputs, creators could impart their ideas for how the generated artifact should

take shape.

Second, when a person’s overarching goals for their AI-enabled creation are conceptually-

rich and sometimes vague, they can struggle to translate these high-level concepts to the

available constructs for configuring an AI system. To address this, I have developed an

Expression Interface Layer, consisting of a visual workspace with cognitive support tools,

that helps people with the process of translating their high-level concepts into a repre-

sentation composed of the AI’s constructs. My studies have found that cognitive support

tools helped designers form an expansive set of concepts that spanned different facts of

their high-level ideas. Moreover, the cognitive support helped in finding AI constructs

that they may have missed and in verifying when constructs were not operating as in-

tended. Together, designers used the Expression Interface Layer to encode a richer and
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more precise expression of their goal into a representation an AI system can effectively

use.

Third, when an individual provides instructions to an automated system to fulfill, the

automated system can fail to reveal constraints it might face that could cause breakdowns

in the individual’s tacit expectations. As such, a person may forget to communicate their

implicit expectations, leading to AI systems that do not know how to appropriately ad-

just to these constraints. To resolve this, I developed an Execution Interface Layer for

recognizing execution constraints and stating implicit expectations for how to adjust to

these constraints. This Execution Interface Layer provides models to simulate execution

to help an individual recognize potential breakdowns before they occur. Made aware of

the potential breakdowns due to constraints, the person can use scaffolds for deciding

reformulations of their instructions, which would mitigate these breakdowns; and allow

them to state their expectations via a new mechanism, allowing AI systems to adapt deci-

sions when facing constraints to satisfy an individual’s expectations. My studies of these

techniques have demonstrated that Execution Interface Layers can mitigate disappoint-

ing breakdowns by communicating about execution constraints and implicit expectations,

before handoff to an automated system.

5.2. Design Principles of Human-AI Interface Layers

The Human-AI Interface Layer advances two key principles for enabling people to

convey and impart their ideas to an AI system. People need a means to communicate

their ideas, which are both intuitive for them and actionable by the AI system. And

people need to engage in a back-and-forth process to form and clarify the full extent of
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ideas for the artifact or experience they are trying to create with the AI system. In what

follows, we reflect on the advantages of creating an interfacing layer that embodies each

of these principles.

5.2.1. Constructs that are Intuitive for People and Actionable by an AI system

Any person using an AI capability to realize their goal for an artifact or experience needs

the means to convey their ideas and intentions. While many AIs provide in their inter-

face some programming or control constructs, current constructs can be an insufficient

modality for individuals to communicate their ideas for creative artifacts or envisioned ex-

periences. To address this, we built Human-AI Interface Layers, sitting on top of existing

AIs, to reconfigure the control or programming interface. This interface layer introduces

intuitive and actionable constructs for communicating human ideas and intentions to AI

systems. These constructs bridge the gap between user understanding and AI’s abilities

and execution.

Taking a Human-AI Interface Layer approach to this problem allowed us, as the de-

velopers of the AI-powered creation tools and applications, to use effective design and

need-finding methods to understand what constructs would align with users’ thinking.

With a technical understanding of the AI system, we developed other computational

components that complemented the existing AI capabilities. The combined AI system

was built to understand and adjust its outputs and actions based on how the user has

described their ideas through the construct.

The Steering and Execution Interface Layers especially exemplified the development

of new user interface constructs with accompanying computational system components.



182

Mapping sliders to semantic dimensions of happy/sad, conventional/surprising, and simi-

lar/different supported novices’ intuitive control over the qualities of the music. To make

an existing AI model controllable based on these constructs, we developed a soft priors

technique for adjusting the sampling distribution of the model. In the Execution Inter-

face Layer, we developed a decision-theoretic mechanism to make the right decision about

when to launch experiences given whether the decision would likely satisfy a designer’s

stated value for timely completion. Designers could encode the social value for various

timely completion scenarios through a simple parameter. In summary, these Human-AI

Interface Layers added new constructs in the front-end user interfaces and computational

components that translate and act on them in the backend.

In a different light, Expression Interface Layers highlight the potential of front-end

workspaces to assist users in creating intermediate semantics that bridge their overarching

ideas and the AI’s existing constructs. Moreover, users can leverage computational tools,

such as the unlimited vocabulary search algorithm, to streamline the mapping between

human concepts and detectable constructs. In contrast to the other Human-AI Interface

Layers, the Expression Interface Layer shows that creators can bridge the semantic gap

between their ideas and the AI’s constructs when given interactive cognitive support tools.

Rather than relying on tool developers to build new semantics and mechanisms to do this

mapping for them, effective front-end workspaces and computational tools can help them

do this bridging themselves.
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5.2.2. Create Dialogues for People to Form and Articulate their Ideas, Pro-

gressively

Human-AI Interfaces facilitated the incremental formation and refinement of meaning,

avoiding the failure of expecting comprehensive communication upfront. By promoting

incremental processes with pauses for evaluation, adjustment, and reflection, a dialogue

was formed that enabled creators to refine different pieces of their ideas and their strategies

for communicating with AI systems.

The Steering Interface Layer enabled creators to incrementally communicate pieces of

their intent by working on chunks of generated content. Working bit by bit enabled them

to explore semantic dimensions and generate alternatives before clarifying their intended

direction. The Expression Interface Layer provided a workspace for opportunistic con-

struction, where observations and reflections spark new ideas and cause shifts in commu-

nication strategy. Cognitive support tools provided the necessary scaffolds for reflecting

and expanding their ideas, foraging and discovering relevant strategies to articulate them,

and recognizing and resolving misconceptions. One kind of Execution Interface Layer,

which was instantiated through an interactive reformulation tool, established an iterative

loop between formulating instructions and envisioning an AI system’s execution under

potential constraints. This loop helped them to recognize implicit expectations of theirs,

and refine their instructions to best satisfy these expectations under constraints. Alto-

gether, through reconfiguring the user interfaces for communicating with an existing AI

system, Human-AI Interface Layers enable creators to progressively form, articulate, and

evaluate smaller portions of their ideas. Ultimately, this enables them to more effectively



184

impart personal and tacit knowledge to AI systems and to create aligned outputs and

actions according to a creator’s goals.

5.3. How to Conduct Research in Human-AI Interface Layers

If you are a researcher interested in developing Human-AI Interface Layers, you might

be wondering how you might discover the goals and intentions of users, and the shortcom-

ings in how people can use existing AI capabilities. In this section, I’ll give advice about

how to systematically approach the discovery of people’s aspirations for using AI in their

personal pursuits, as well as their challenges with effectively communicating their ideas

and intentions to AI Assistants. Then, I’ll reflect on my own design research methods for

gaining answers to these questions.

5.3.1. Framework for Understanding In What Respect One Should Enhance

Communication with AI Assistants

As a researcher of AI-powered applications for personal pursuits, one can think about three

important facets of the problem: (a) people’s motivations for using AI assistance, (b) the

types of ideas, intentions, and expectations they needed to impart to AI collaborators

and agents, and (c) the shortfalls in communicating these intentions with existing AI

interfaces.

When considering how AI can assist in personal pursuits, we have to understand what

personal knowledge or specific ideas users have for these pursuits. What intention and

expectation does a user have for their bespoke usage, to achieve their custom goals? By
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the same token, what does the AI need to know to appropriately assist the user in this

endeavor that is personally meaningful, and uniquely conceptualized by them?

Remember, we are trying to enhance a user’s ability to communicate their bespoke

goals and intentions to the AI system. Rather than designing interfaces or constructs

which directly match an individual’s specific goals, my approach seeks to understand the

types of intentions that users have for this type of task, and consider what is challenging

about communicating these types of intentions to existing AI systems. In this dissertation,

I characterized three example types of intentions people can have: (1) ideas to evoke in

their co-created artifact that require fine-grained and incremental control; (2) overarching

ideas that are described by a collection of subconcepts and machine constructs; (3) implicit

expectations, such as interactional norms that should be upheld, that they’ve forgotten

to state regarding AI execution.

5.3.2. Reflections on my own methods and perspective

I used a variety of design-research methods to understand (a) people’s motivations for

using AI assistance, (b) the types of ideas, intentions, and expectations they needed to

impart to AI collaborators and agents, and (c) the shortfalls in communicating these

intentions with existing AI interfaces. In what follows, I’ll recount the types of methods

I used to understand these facets when developing Human-AI Interface Layers for the

domains of music co-creation and opportunistic social connection.

Music Co-Creation: I conducted interview studies to understand how novice com-

posers wanted to use generative AI to assist them in the pursuit of music composition.

This laid the motivation for users wanting to engage in music making despite lacking
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music theory expertise, and to create a song that embodied their detailed and nuanced

creative vision. By conducting formative tests with novice composers using an existing

generative AI music tool, I was able to understand the types of fine-grained elements com-

posers wanted to control when shaping a song to match their creative vision, and what

was challenging about using the conventional AI interface to generating the completed

artifact at once.

Opportunistic Social Connection: Collaborating with other HCI systems re-

searchers and design researchers to invent new social technologies for connecting at dis-

tance helped me develop a clear design concept for the high-level situations that afford

activities which context-aware AI agents would need to identify and facilitate. I came

to deeply understand these requirements for designing and implementing contextually-

triggered, opportunistic experiences—by working closely with research collaborators who

were designing and prototyping these experiences [131], and becoming one of those de-

signers myself [103].

To understand the shortfalls in communicating high-level ideas of experiences to

context-aware AI systems, I conducted pilot lab studies of an early version of the visual

programming environment tool for defining situational triggers. Studying the expressions

made by participants, and doing detailed think-aloud studies to understand designers’ pro-

cesses, helped me clarify the bridging problem, and the three bridging challenges faced

when translating a high-level idea of a situation into lower-level context-features.

Through conducting deployment tests of an AI agent for coordinating opportunistic

social experience [103], I discovered that certain human expectations regarding interde-

pendent social interactions were often violated, such as dyadic interactions not completing
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in a timely or satisfying manner, or situations for shared experiences being inaccessible.

I came to understand that such breakdowns occurred because designers did not have a

means to communicate such expectations, or could fail to recognize how their expecta-

tions might be impacted, due to variations in the anticipated availability of people across

geographic regions during execution.

How might I advise an aspiring researcher in this area in light of these research

reflections? A design-research approach—which can entail collaborating with design-

researchers in the domain of interest, or becoming one yourself—-was a useful way to

understand users’ aspirations for AI assistance and the kinds of ideas or intentions they

need to communicate to AI to realize their aspirations and goals. Additionally, I found

that employing various fidelities of needfinding and testing helped to reveal where prob-

lems could arise when creating with AI collaborators, expressing ideas in terms that AI

agents understand, and through the real-world execution of such AI agents. You too

can employ such methods to discover people’s motivations for employing AI assistance,

the types of goals, ideas, and intentions they desire to realize with AI’s help, and what

challenges occur when trying to interface with existing AI systems.

5.4. Generalizing and Extending Human-AI Interface Layers

We examined three example classes of problems for communicating an individual’s

ideas and expectations to existing AI interfaces. The Human-AI Interface Layers devel-

oped in this dissertation addresses instantiations of these problems in the domains of

music co-creation with generative AI, and intelligent, context-aware agents for facilitating
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opportunistic social experiences. In this section, we revisit the three Human-AI Interface

Layers and discuss themes regarding their generalizability and extendability.

The first theme I will discuss is the generalizability of Human-AI Interface Layers with

respect to the three classes of problems they address. We maintain that these Human-

AI Interface Layers do offer a general approach which future researchers or application

builders can extend beyond the instantiations of the problems we considered. We’ll discuss

other practical problems, and how one might consider adapting the Human-AI Interface

Layer accordingly. The second theme I will discuss is how the arrival of more powerful AI

capabilities, like Large Language Models (LLMs), impacts the obstacles to communicating

intentions through an AI’s interface, and the conceptual and technical approaches used

for designing a Human-AI Interface Layer.

5.4.1. Generalizing and Extending Steering Interface Layers

Steering Interface Layers were developed to reconfigure the conventional interface of an

AI which generated all the content at once, and provided few ways to control how the AI

generated content. Steering Interface Layers provides several key benefits. By constrain-

ing how the AI model generated content, people could more easily find content that more

closely aligned with their intentions. By giving ways to partition the generated outputs,

people could assign different parts different musical qualities; build the composition in-

crementally, bit-by-bit; comprehend the different components that were generated; and

intervene and edit the generated outputs. In this subsection, I’ll discuss these benefits

and discuss how current and future interfaces can promote these benefits.
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5.4.1.1. Conditioning Generation According to Semantic Qualities. In our stud-

ies, the Steering Interface Layer helped composers have more control by allowing them

to constrain how the generative AI model should produce content based on semantically-

meaningful dimensions like happy/sad, and similar/different. Since the existing generative

models for infilling music compositions did not support conditional generation, we devel-

oped a soft priors technique that adjusted the sampling distribution of this AI model

without retraining.

Since then, the ML field has developed a range of techniques for adding controllability

of semantically-meaningful attributes to an existing generative AI model (e.g., Plug N

Play models [30]; Prefix Tuned Transformers [95, 136]). The most fundamental advance

for controllability in generative AI has been the development of models that can generate

content based on text-based prompts and instructions [114, 110, 21]. The flexibility of

describing requests through language has enabled users to have vast ways to control how

these models generate content. Such advances have found their way to AI models for

generating other types of content, such as music and sound [3, 28].

However, there are new challenges in communicating intentions to AI models with the

advances in conditional control via natural language prompts. Recent work has revealed

that crafting prompts—the sole means to align generated outputs to one’s intent—can be

a challenging task. In response, HCI Researchers have developed tools, on top of text-

to-image generative models, to support the iterative exploration of prompt ideas. Opal

is a system for generating images for a news article that uses a structured exploration of

visual concepts (e.g., tone, emotion, subject) extracted from the news article [99]. Promp-

tify is an interactive system to facilitate iterative prompt exploration and refinement for a
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widely-used text-to-image generative model, with a unique prompt suggestion engine pow-

ered by a chat-based LLM that supports iteration of prompts through natural language

instruction [18]. These innovative developments highlight that conditional-generation

based on text prompts poses new challenges for steering of generative AI models towards

one’s intentions; and that the formulation and articulation of one’s intentions remains

important for realizing creative goals with powerful text-to-content models.

5.4.1.2. Assigning Different Parts Different Qualities. Beyond the benefits of con-

ditional control, Steering Interface Layers also were important in allowing creators to par-

tition generated outputs into semantically meaningful chunks. In our studies, the Steering

Interface Layers were beneficial by allowing creators to control how different chunks take

on different musical or emotional qualities.

Some text-to-image and text-to-music offer similar abilities to reference different parts

in an artifact to control their generation (e.g., paragraphs in an essay [110]; different

objects or characters in an image; different parts and voices in a song [3, 28]). How-

ever, an important difference is that end-to-end models still generate all of those parts

together, rather than one at a time. We found that generating all parts at once can cause

AI-induced information overload and make it difficult for users to evaluate the generated

outputs. The difficulty evaluating the outputs was especially apparent in the case of

music, where multiple voices playing at once may be hard to disentangle from a novice’s

ear. Furthermore, our studies found that generating a fully completed artifact can re-

strict people’s engagement in defining fine-grained elements of their music composition.

Other research in co-creation with generative AI corroborates our findings that when

creators want to craft how different elements work together, larger models that generate
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entire artifacts end-to-end were less preferred; and “song writing teams resorted to break-

ing down their musical goals into smaller components, leveraging a wide combination of

smaller generative models and recombining them in complex ways to achieve their creative

goals” [77]. Given that powerful, text-to-content models continue to use the conventional

interface of generating content end-to-end, there is a growing need to make these same

models decomposable, steerable, and interpretable to support fine-grained and iterative

engagement.

5.4.1.3. Building an Artifact Incrementally, or Bit-By-Bit. The other kind of

interface feature that supported fine-grained control in the Steering Interface Layer was

allowing users to partake in an incremental steering process. This process allows creators

to intervene and rectify potential errors before proceeding with further generations, en-

abling them to progressively construct their artifacts chunk by chunk. This incremental

approach served a twofold purpose: not only did it facilitate a deeper comprehension of the

artifact under construction, but it also assisted individuals in identifying and addressing

issues arising from the intricate interactions between different components. Moreover, this

method enhanced the sense of ownership and connection that creators felt toward their

creations. In the present landscape, various other generative AI tools are embracing and

enhancing the concept of incremental steering. These tools constrain the AI model’s out-

put, enabling it to generate single components or layers at a time. Generative tools that

support applying different prompts to different canvas areas [24], or building out an image

through an outfilling interaction [119] play a pivotal role in this process. For instance,

an AI could be guided to create an image of a snowy background scene and subsequently

populate it with specific characters or animals in the foreground. Such interfaces provide
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a means to specify which pieces or layers to operate on and how they should be generated,

allowing creators to work incrementally, step-by-step, chunk-by-chunk, layer-by-layer, etc.

5.4.1.4. Tracking the progression via Editing and Repairs. Incremental steering

is beneficial because it facilitates the gradual construction of outputs, a process that en-

tails generating segments in a sequential manner. This method not only aligns with the

concept of partitioning outputs and generating bit by bit, but it also introduces another

core advantage: the ability to employ the current state of the artifact as a point of ref-

erence for future directions. For instance, the steering interface empowered composers to

construct their creations brick by brick, enabling them to reference previous segments with

the assurance that these portions remain unchanged, while only the additions introduce

novelty.

Comparatively, in the realm of text-to-image models, a similar concept is emerging

– text-driven image editing. For instance, Prompt-to-Prompt image editing [66] is a

technique in which a user generates an image based on a prompt; then, they can tweak

the prompt to create a new image, making only minimal changes to match the updated

prompt. An initial prompt of “a cake with decorations” might be refined to “a cake with

jelly bean decorations” and the initial image would be updated accordingly. This ap-

proach holds two key advantages. Firstly, it deepens the user’s understanding of how the

artifact develops, enabling a clearer grasp of its progression. Secondly, it empowers users

to fine-tune and repair existing elements [4]. For my studies on the Steering Interface

Layers, these benefits had downstream effects for people’s self-efficacy, learning, engage-

ment and agency in the process, and ownership over the final artifact. In summary, by

building upon what’s already there, editing and steering are similar in that they enhance
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a user’s engagement through progressively updating and clarifying their intentions and

instructions.

5.4.2. Generalizing and Extending Expression Interface Layers

5.4.2.1. Using AI collaborator to Formulate Concepts and Articulate Them

with Machine Features. The motivation behind Expression Interface Layers was to

make up for the deficiency in a context-aware AI agent not having constructs that directly

match a designer’s concepts for the situations and experiences they wanted to facilitate.

In framing the problem as helping designers express their high-level concepts with the

AI agent’s available constructs, I discovered that humans have cognitive deficiencies in

their process of expressing ideas to machines. The purpose of the tools in the Expression

Interface Layer is to address these cognitive challenges that humans face when they must

translate their overarching human ideas into lower-level machine representations.

Recent developments in Large Language Models (LLMs) have ushered in an era where

AI collaborators can provide suggestions in tasks related to creative design ideation and

turning natural language ideas into computer code. The capability of an LLM to work

with available programming APIs is outstanding. By training on the documentation of

public programming APIs, LLMs are capable of using programming APIs to fulfill user’s

natural-language instructions. The capability of an LLM to do conceptual design work is

also considerable since they have learned a range of common sense and domain-specific

knowledge for a variety of tasks. Such developments have impacted the specific areas of

designing and programming context-aware experiences, which is a domain this dissertation

specifically covers. At the time of writing, the chat-based LLMs like ChatGPT have
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been trained on internet data containing information about Yelp’s Public API for place

categories and thus understands the semantics of those categories and how they are used.

ChatGPT is also capable of reasoning about knowledge about human activities, and the

types of places that support such activities.

While the tools implemented in this dissertation augmented a creator’s manual process

of fleshing out subconcepts and linking to relevant features, the future area of authoring

context-aware experiences, and Expression Interface Layers more generally, will be im-

pacted by these LLM advances. As future tools are developed for expressing concepts

to context-aware agents, it should not be surprising to see tools incorporating AI col-

laborators who are capable of producing good first drafts of situational requirements, as

captured through logical expressions. For example, an AI collaborator like ChatGPT

could be instructed to (1) brainstorm types of places to do an activity and (2) iden-

tify the Yelp categories that can detect these types of places. At the time of writing, I

tested this for the situation “places for enjoying a relaxing stroll”; I found that ChatGPT

produced several concepts for types of places (City Park, Botanic Garden, Beach Board-

walk, Historic District, Zen Garden, Urban Waterfront, Art and Sculpture Garden) and

linked these types of places to the closest Yelp categories when available (parks, gardens,

beaches, landmarks, art galleries).

Nonetheless, the structure of the problem that the Expression Interface Layer solves

remains the same. Whether a person has access to more capable AI collaborators like

LLMs to aid them, the bridging problem is what the designer must still face when express-

ing a human’s overarching concept in terms of lower-level machine constructs. Whichever
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specific techniques will be used, they will need to be wary of challenges such as under-

scoping of concepts, underscoping of machine features, and addressing inaccuracies when

machine constructs operate differently than intended.

The techniques I implemented for the Expression Interface Layer were simple and

straightforward but were nonetheless effective for overcoming the bridging challenges as

compared to the version without any cognitive bridging tools. The introduction of AI

capabilities like LLMs can aid in the development of more sophisticated techniques to

further tackle these same bridging challenges. For example, since LLMs generations to

the question can be used to brainstorm many types of subconcepts or examples, this

type of computational support can overcome narrowly defined expressions by helping

designers recognize more concepts they might have not thought of, and other relevant

context features.

5.4.2.2. Addressing Bridging Problems in Other Domains. The Expression In-

terface Layer tackled a general problem, where a person is representing their overarching

idea in terms of a rich constellation of subconcepts and fine-grained attributes that can

be detected by an AI system. Although our work focused on this problem in the do-

main of context-aware computing, we anticipate that Interface Layers for representing

conceptually rich, overarching ideas will be important for other domains as well.

One adjacent domain is in human-centered AI model development, where researchers

have also been interested in supporting designers and domain experts in working at the

conceptual-level when defining AI models. For example, the Model Sketching techni-

cal framework [92] refocuses practitioner attention on composing high-level, human-

understandable concepts that the model is expected to reason over (e.g., profanity, racism,
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or sarcasm in a content moderation task) using zero-shot concept instantiation. This

framework for concept-based AI model development is promising because it prompts

high-level modes of thought when modeling decisions. However, model designers also

mentioned needing more assistance when brainstorming subconcepts for an overarching

idea (e.g., “racism” is one way a social media post could be hateful, but what other ways?).

You might notice that this is an example of how designers can struggle to recall or dis-

cover other human-understandable concepts to describe to AI systems. It has a striking

similarity to one of the bridging problems our Expression Interface Layer addressed.

The main implication of my work is that designers can face specific cognitive challenges

when expressing a conceptually-rich idea; and cognitive bridging tools targeted towards

these challenges can enhance their expression process. Therefore, I’d recommend under-

standing the exact bridging problems that designers can face when doing concept-based

AI model development. What can get in the way of brainstorming ideas? Are there chal-

lenges in developing models of subconcepts that precisely operate as the designer intends?

After understanding the bridging problems, we can consider what techniques might ad-

dress these challenges. For example, if challenges arise in cognitive fixation, designers

can adopt principles from design-ideation and analogical design when designing a new

Expression Interface Layer—similar to how we were inspired when developing the reflect

and expand prompts.

Future development of the Expression Interface Layers for the domain of modeling

high-level concepts can incorporate other techniques, such as LLMs, when overcoming

cognitive challenges such as brainstorming. Since chat-based LLMs have demonstrated

exceptional abilities to generate creative ideas, dialogues with them could also help in



197

this conceptual mapping and expression process. Developing visual interfaces to capture

concepts, and map out the conceptual space, will likely be an important complement to

this iterative, construction process.

5.4.3. Generalizing and Extending Execution Interface Layers

The Execution Interface Layer work studies a class of intelligent agents that can fulfill

users’ instructions and focuses on improving the likelihood that these agents can meet

a user’s expectations when executing tasks. These potential use cases for intelligent

agents span across a wide variety of domains and tasks. Software or user interface agents

have been one use-case long-envisioned for intelligent agents [123, 130] with recent

technical innovations bringing them much closer to a reality [94, 1]. These intelligent

software agents can fulfill user requests by automating digital actions on various software

tools on mobile and desktop. Example tasks include “order a latte” via the Starbucks

app [94] to “find me a list of homes suitable for a family of 4. Budget is $600k” via

the Redfin real estate site [1]. Generally, these tasks can span simple uses like executing

a repeatable set of actions in a user interface, to more complex tasks like information

gathering. Several intelligent agents have been developed for this use case. Researchers

in HCI have developed programming-by-demonstration systems that empower users to

establish automation for digital tasks using actions on UI elements in smartphones and

computers [94]. Similar to this, companies like Adept AI [1] are engaged in training

foundational AI models with the ability to interpret text instructions and translate them

into digital actions spanning a diverse array of computer tools.
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Similar to the challenges driving the development of our Execution Interface Layer,

errors and breakdowns due to unfamiliar scenarios during execution prompt the creation

of interactive tools to identify and manage them. For instance, an intelligent agent tasked

with automating smartphone activities might encounter unfamiliar user interfaces during

execution, necessitating appropriate handling strategies. When such unfamiliar situations

can be caught, an effective approach is to defer to the human requester or operator during

execution for further clarification so this case and similar future cases can be handled [94].

With more sophisticated, intelligent agents capable of executing tasks involving multi-

ple digital actions, the significance of addressing discrepancies in user expectations grows.

Consider the request of “order my breakfast groceries from the Amazon app. My list con-

sists of blueberries, oatmeal, milk”. Even if an agent does not encounter technical issues

using the UI elements to purchase the required items, users can still be disappointed if the

agent purchases blueberries that are much too expensive relative to the person’s internal

expectations, which can occur due to seasonal price fluctuations. Such breakdowns in

implicit user expectations are impossible for intelligent agents to catch if they don’t know

about these expectations. As we expand our view of execution issues, from technical

errors to user expectation breakdowns, additional user interfaces, such as those advanced

by the Execution Interface Layer, will be increasingly important so humans can recognize

and state their implicit expectations so intelligent agents can respect them.

While working on designing the Execution Interface Layer, I discovered that simulating

various execution scenarios was valuable in identifying issues with implicit expectations

before the actual execution phase. This approach is akin to other efforts to use large

amounts of past and simulated data to discover issues and enhance the robustness of AI
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execution in open-world scenarios [68]. Taking the example of intelligent agents ordering

grocery items, conducting simulations throughout different times of the year could unveil

seasonal price fluctuations. This information could then assist in making requests more

attuned to a user’s price sensitivities.

Finding good strategies for adjusting to constraints, and communicating them to in-

telligent agents is an important area, which my designs for the Execution Interface Layer

could shed light on. The approach to reformulating hard-to-meet requests included scaf-

folds that helped users identify the larger goal behind their request so they could find

alternative formulations. Therefore, if blueberries are often out of stock in an online mar-

ketplace, it’s important to recognize that fruit on top of oatmeal was the core intention

behind the user’s request so that appropriate substitutes can be found. Moreover, this

approach to encoding values over different execution scenarios could allow users to more

effectively meet their expectations so intelligent agents could decide to make adjustments

more autonomously. It’s possible that an Execution Interface Layer for these intelligent

agents could provide a means for users to communicate their values over different scenarios

(e.g., when different options are available, with variations in their price and freshness), so

that when users request “purchase the best fruit to accompany my breakfast this week”

decision-theoretic mechanisms could use their encoding of preferences to choose the best

one on behalf of the user. Although these usage scenarios are hypothetical, they illustrate

the different ways that an Execution Interface Layer could elicit implicit ideas for a user’s

goals to drive adjustments so intelligent agents can better satisfy the user’s full set of

goals and expectations.
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5.5. Promoting the Values of Human Engagement

As AI gets better, a subset of developers will be eager to create AI-powered applica-

tions that can automatically do tasks, such as content-creation, that requires very little

user involvement. However, the negative effects of this eagerness for scaling AI capabilities

is already being felt by artists, where image generators trained as text/image pairs have

caused harms, including economic loss due to these AIs being viewed as replacements for

human artists work [84]. This automation viewpoint places a sole priority on speed of

content creation and scale at which a task that required craft can be completed. But the

automation viewpoint lacks an appreciation that activities like making art or composing

music are uniquely human endeavors that involve human sensibilities and engagement.

For example, creating music that sounds more sad than happy, for instance, doesn’t nec-

essarily enable that creator to reflect on their own experience of sadness and to convey

the tenors and textures of their personal understanding of that emotion. These activities

of self-expression are important because creators derive personal satisfaction when they

can craft pieces uniquely associated with their experience of creation, and that capture

their personal perspective and emotions [10].

My work with Interface Layers emphasized the importance of reconfiguring the in-

terface for communicating with AI to respect the human’s role and perspective when

creating artifacts and experiences enabled by AI. A Human-AI Interface Layer supports

an engaged process of reflecting upon and discovering ways to convey nuanced ideas in

artifacts through the use of AI capabilities. I designed them with an awareness that self-

expression is characterized by an emergent making process, requiring human engagement

from start to end. Through my studies of Steering Interface Layers, for example, I found
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that such a process not only helps to better achieve creative goals but also supports greater

feelings of ownership and self-efficacy during creation. I believe Human-AI Interface Lay-

ers will be a useful approach to promote the values of crafting for AI-assisted creation

artifacts and experiences, especially as AI’s default interfaces may not be intentionally

designed to promote human engagement in these activities.

Human engagement in the creation process is not only good for achieving artifact

quality that reflects a creator’s self-expression. For novices, in particular, retaining an

engaged role in the process is important for developing confidence and mastery. Yet, as

AI becomes increasingly capable of performing tasks thought to be uniquely in the realm

of human intelligence, novices will have the option to request assistance from AI. This will

make it increasingly tempting to ask AI to do the entire task on their behalf—which would

be detrimental to their own development and mastery. This tension is a great challenge

that educators will have to navigate to support novice skill development, given the eager-

ness to incorporate AI and technological assistance in human endeavors such as crafting

activities. In this direction, recent research has used workshops with craft educators to

understand their perceptions of the opportunities and concerns of using text-to-image

generative AI. They found opportunities and challenges in using AI in targeted stages of

the design process (ideation, externalization, design constraints, embodied making, and

assessment) [128]. Instead of taking an all-or-nothing perspective on the use of AI, learn-

ers and educators can decompose any human activity into its constituent subprocesses,

and thoughtfully reflect on the positive benefits and negative consequences that AI as-

sistance can have for learning. Along this line of thinking, approaches like Human-AI

Interface Layers can configure the usage of AI so it effectively assists in some parts of
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the process, while learners can focus their attention on another subskill they are doing

targeted practice on.
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CHAPTER 6

Conclusion

This thesis proposes a crucial layer in an AI system’s application stack called the

Human-AI Interface Layer. This layer serves as a mediator enabling creators to effectively

communicate their ideas and intentions while crafting artifacts and facilitating experiences

with an AI capability. Through exposing intuitive and functional constructs, Human-AI

Interface Layers enable modifications to the operations of pre-existing AI capabilities.

This support leads to a more straightforward expression of ideas. Human-AI Interface

Layers enable an effective process so creators can form, evaluate, and clarify the ideas

they desire to convey to AI.

This thesis contributes three kinds of Human-AI Interface Layers that address corre-

sponding challenges creators can face when using conventional AI interfaces to form and

articulate their ideas and intentions to AI systems.

• I contributed a Steering Interface Layer that partitioned and constrained an

existing generative AI model’s outputs. This allowed creators to exercise fine-

grained control while progressively guiding the co-creation of a generated artifact

toward desired directions.
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• I proposed an Expression Interface Layer that supports an effective process for

encoding a high-level, overarching idea in terms of an AI system’s low-level con-

structs. It provided a visual workspace and cognitive bridging tool that helped a

designer flesh out their high-level concepts and forage for relevant and precisely-

matching constructs, leading to comprehensive and accurate communication of

their intentions.

• I advanced an Execution Interface Layer that helps humans consider realistic

constraints when automated systems execute, so they can recognize and state

their implicit expectations so AI systems can adapt to respect them.

The fundamental idea of this thesis is to improve a user’s ability to communicate

their ideas despite AI’s inherently limited interfaces for doing so. Human-AI Interface

Layers expose new user interface constructs with accompanying computational system

components so people can communicate personal and meaningful ideas to AI systems that

would have otherwise been impossible to do with an unmodified AI capability. Human-

AI Interface Layers facilitate the incremental forming and refining of a user’s intent,

avoiding the failure of expecting a user’s comprehensive communication upfront. By

promoting incremental processes with pauses for evaluating, adjusting, and reflecting on

one’s content, a dialogue can be established to enable humans to refine different pieces of

their ideas and their strategies for communicating them to the AI system. We believe that

Human-AI Interface Layers will be a powerful approach to empowering humans to imbue

their AI systems with an awareness and sensitivity to their personal and subjective ideas

and desires—ranging from personal emotions, social situations, and social norms—leading
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to a future where AI systems can foster the human goals, expectations, and values core

to engaging in personal pursuits and human endeavors.
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